谷歌浏览器插件
订阅小程序
在清言上使用

Tracking surface charge dynamics on single nanoparticles.

Science advances(2024)

引用 0|浏览41
暂无评分
摘要
Surface charges play a fundamental role in physics and chemistry, in particular in shaping the catalytic properties of nanomaterials. However, tracking nanoscale surface charge dynamics remains challenging due to the involved length and time scales. Here, we demonstrate time-resolved access to the nanoscale charge dynamics on dielectric nanoparticles using reaction nanoscopy. We present a four-dimensional visualization of the spatiotemporal evolution of the charge density on individual SiO2 nanoparticles under strong-field irradiation with femtosecond-nanometer resolution. The initially localized surface charges exhibit a biexponential redistribution over time. Our findings reveal the influence of surface charges on surface molecular bonding through quantum dynamical simulations. We performed semi-classical simulations to uncover the roles of diffusion and charge loss in the surface charge redistribution process. Understanding nanoscale surface charge dynamics and its influence on chemical bonding on a single-nanoparticle level unlocks an increased ability to address global needs in renewable energy and advanced health care.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要