基本信息
浏览量:3

个人简介
The human genome consists of approximately three billion nucleotides distributed amongst twenty-two autosomes and one sex chromosome. Most of our genes are encoded within these 23 chromosomes. With few exceptions, human cells contain two genome copies that if joined would measure over two meters in length. Chromosomes are thus extensively folded in order to fit within the ultra small, micrometer-scale confines of the cell nucleus.
Our genomic DNA is first packaged with histone and non-histone proteins in the form of chromatin. This packaging shortens chromosome length at least sevenfold. Chromatin then folds different ways in the nucleus: from high to low resolution, chromatin fibers first engage into so-called “looping contacts” where distal genomic regions are physically close to each other (see Summary Figure)[1]. Looping interactions can create microenvironments and result in the formation of small chromatin domains or “subTADs”. These domains are specific to cell types, and vary mostly based on chromatin composition and whether genes are expressed. SubTADs can interact with one another within the larger “topologically associating domains” (TADs). These are more conserved between cell types and even across species at synthenic regions. TADs then interact with each other, forming “metaTADs” along chromosomes. MetaTAD formation broadly depends on chromatin composition and transcription activity. Large chromatin domains also tend to congregate as “compartments” in the nuclear space when they have similar composition and activity. Consequently to this extensive chromatin folding, chromosomes each occupy their own nuclear territory (CT), although chromatin from different chromosomes can also interact.
Our genomic DNA is first packaged with histone and non-histone proteins in the form of chromatin. This packaging shortens chromosome length at least sevenfold. Chromatin then folds different ways in the nucleus: from high to low resolution, chromatin fibers first engage into so-called “looping contacts” where distal genomic regions are physically close to each other (see Summary Figure)[1]. Looping interactions can create microenvironments and result in the formation of small chromatin domains or “subTADs”. These domains are specific to cell types, and vary mostly based on chromatin composition and whether genes are expressed. SubTADs can interact with one another within the larger “topologically associating domains” (TADs). These are more conserved between cell types and even across species at synthenic regions. TADs then interact with each other, forming “metaTADs” along chromosomes. MetaTAD formation broadly depends on chromatin composition and transcription activity. Large chromatin domains also tend to congregate as “compartments” in the nuclear space when they have similar composition and activity. Consequently to this extensive chromatin folding, chromosomes each occupy their own nuclear territory (CT), although chromatin from different chromosomes can also interact.
研究兴趣
论文共 93 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
Saumya Agrawal,Andrey Buyan,Jessica Severin,Masaru Koido,Tanvir Alam,Imad Abugessaisa,Howard Y. Chang,Josee Dostie,Masayoshi Itoh,Juha Kere,Naoto Kondo, Yunjing Li,Vsevolod J. Makeev,Mickael Mendez,Yasushi Okazaki,Jordan A. Ramilowski, Andrey I. Sigorskikh,Lisa J. Strug,Ken Yagi,Kayoko Yasuzawa,Chi Wai Yip,Chung Chau Hon,Michael M. Hoffman,Chikashi Terao,Ivan V. Kulakovskiy,Takeya Kasukawa,Jay W. Shin,Piero Carninci,Michiel J. L. de Hoon
PLoS ONEno. 5 (2024): e0295971-e0295971
openalex(2023)
CANCERSno. 13 (2023)
Chi Wai Yip,Chung-Chau Hon,Kayoko Yasuzawa,Divya M. Sivaraman,Jordan A. Ramilowski,Youtaro Shibayama,Saumya Agrawal,Anika V. Prabhu,Callum Parr,Jessica Severin,Yan Jun Lan,Josee Dostie,Andreas Petri,Hiromi Nishiyori-Sueki,Michihira Tagami,Masayoshi Itoh,Fernando Lopez-Redondo,Tsukasa Kouno,Jen-Chien Chang,Joachim Luginbuhl,Masaki Kato,Mitsuyoshi Murata,Wing Hin Yip,Xufeng Shu,Imad Abugessaisa,Akira Hasegawa,Harukazu Suzuki,Sakari Kauppinen,Ken Yagi,Yasushi Okazaki,Takeya Kasukawa,Michiel de Hoon,Piero Carninci,Jay W. Shin
Cell Reportsno. 13 (2022): 111893-111893
Chi Wai Yip,Chung-Chau Hon,Kayoko Yasuzawa,Divya M. Sivaraman,Jordan A. Ramilowski,Youtaro Shibayama,Saumya Agrawal,Anika V. Prabhu,Callum Parr,Jessica Severin,Yan Jun Lan,Josée Dostie,Hiromi Nishiyori-Sueki,Michihira Tagami, Masayoshi Itoh,Fernando López-Redondo,Tsukasa Kouno, Jen-Chien Chang,Joachim Luginbühl, Masaki Kato,Mitsuyoshi Murata,Wing Hin Yip, Xufeng Shu,Imad Abugessaisa,Akira Hasegawa,Harukazu Suzuki,Ken Yagi, Takeya Kasukawa,Michiel de Hoon,Piero Carninci, Jay W. Shin
bioRxiv (2022)
Saumya Agrawal,Ivan V. Kulakovskiy,Jessica Severin,Masaru Koido,Tanvir Alam,Imad Abugessaisa,Andrey Buyan,Howard Y. Chang,Josee Dostie,Masayoshi Itoh,Juha Kere,Naoto Kondo, Yunjing Li,Vsevolod J. Makeev,Mickaël Mendez,Yasushi Okazaki,Jordan A. Ramilowski, Andrey I. Sigorskikh,Lisa J. Strug,Ken Yagi,Kayoko Yasuzawa,Chi Wai Yip,Chung Chau Hon,Michael M. Hoffman,Chikashi Terao,Takeya Kasukawa,Jay W. Shin,Piero Carninci,Michiel JL de Hoon
bioRxiv (Cold Spring Harbor Laboratory) (2022)
Saumya Agrawal, Tanvir Alam,Masaru Koido,Ivan V. Kulakovskiy,Jessica Severin,Imad Abugessaisa,Andrey Buyan,Josee Dostie, Masayoshi Itoh, Naoto Kondo,Yunjing Li,Mickaël Mendez,Jordan A. Ramilowski,Ken Yagi,Kayoko Yasuzawa,Chi Wai Yip, Yasushi Okazaki, Michael M. Hoffman, Lisa Strug,Chung Chau Hon, Chikashi Terao, Takeya Kasukawa,Vsevolod J. Makeev, Jay W. Shin,Piero Carninci,Michiel JL de Hoon
bioRxiv (2021)
Jordan A. Ramilowski,Chi Wai Yip,Saumya Agrawal,Jen-Chien Chang,Yari Ciani,Ivan V. Kulakovskiy,Mickaël Mendez,Jasmine Li Ching Ooi,John F. Ouyang,Nick Parkinson,Andreas Petri,Leonie Roos,Jessica Severin,Kayoko Yasuzawa,Imad Abugessaisa,Altuna Akalin,Ivan Antonov,Peter Arner,Alessandro Bonetti,Hidemasa Bono,Beatrice Borsari,Frank Brombacher,Christopher Cameron,Carlo Vittorio Cannistraci,Ryan Cardenas,Mélissa Cardon,Howard Chang,Josée Dostie,Luca Ducoli,Alexander V. Favorov,Alexandre Fort,Diego Garrido,Noa Gil,Juliette Gimenez,Reto Guler,Lusy Handoko,Jayson Harshbarger,Akira Hasegawa,Yuki Hasegawa,Kosuke Hashimoto,Norihito Hayatsu,Peter Heutink,Tetsuro Hirose,Eddie L. Imada,Masayoshi Itoh,Bogumił Kaczkowski,Aditi Kanhere,Emily Kawabata,Hideya Kawaji,Tsugumi Kawashima,S. Thomas Kelly,Miki Kojima,Naoto Kondo,Haruhiko Koseki,Tsukasa Kouno,Anton Kratz,Mariola Kurowska‐Stolarska,Andrew Tae Jun Kwon,Jeffrey T. Leek,Andreas Lennartsson,Marina Lizio,Fernando López‐Redondo,Joachim Luginbühl,Shiori Maeda,Vsevolod J. Makeev,Luigi Marchionni,Yulia A. Medvedeva,Aki Minoda,Ferenc Müller,Manuel Muñoz-Aguirre,Mitsuyoshi Murata,Hiromi Nishiyori,Kazuhiro R. Nitta,S. Noguchi,Yukihiko Noro,Ramil Nurtdinov,Yasushi Okazaki,Valerio Orlando,Denis Paquette, Christian Parr,Owen J. L. Rackham,Patrizia Rizzu,Diego Fernando Sánchez Martinez,Albin Sandelin,Sanjana Pillay,Colin A. Semple,Youtaro Shibayama,Divya M. Sivaraman,Takahiro Suzuki,Suzannah C. Szumowski,Michihira Tagami,Martin S. Taylor,Chikashi Terao,Malte Thodberg,Supat Thongjuea,Vidisha Tripathi,Igor Ulitsky,Roberto Verardo,Ilya E. Vorontsov,Chinatsu Yamamoto,Robert S. Young,J. Kenneth Baillie,Alistair R. R. Forrest,Roderic Guigó, Michael M. Hoffman,Chung-Chau Hon,Takeya Kasukawa,Sakari Kauppinen,Juha Kere, Boris Lenhard,Claudio Schneider,Harukazu Suzuki,Ken Yagi,Michiel de Hoon,Jay W. Shin,Piero Carninci
Genome researchno. 9 (2020): 1377-1
加载更多
作者统计
#Papers: 93
#Citation: 9718
H-Index: 40
G-Index: 72
Sociability: 7
Diversity: 3
Activity: 1
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn