基本信息
views: 2
Career Trajectory
Bio
Research Interests
Tuberculosis has been a major global health concern for well over a century. Although many potential treatments have been vigorously pursued, conventional strategies have failed to eradicate TB infection and, in fact, the global threat has grown over the last couple decades. I believe that failure results in part from the fact that such attempts have neglected to take into account the deeply integrated, symbiotic-like relationship between Mycobacterium tuberculosis and its host that has developed over 40,000 years of human/bacterial co-evolution. My research group aims to understand the key mechanisms that dictate the M. tuberculosis-human relationship with the goal of breaking these ties, targeting either host or pathogen factors to eliminate M. tuberculosis infection and, with that, to contribute to solving a steadily increasing threat in global health. In particular, while current vaccine strategies aimed at promoting specific immune responses (e.g. T-cells and cytokines) to various M. tuberculosis antigens have failed, we believe that promoting innate responses of host cell macrophages, the cell type where M. tuberculosis grows, represents an unconventional strategy to block bacterial infection.
Our perspective on M. tuberculosis infection has been shaped primarily from our results showing that macrophages have unexpected potential to intrinsically control bacterial viability and to shape specific immune responses. Conventional wisdom in the innate immunity field is that detection of pathogens is accomplished by cellular receptors that recognize unique molecular structures of microbes, giving rise to stereotypical transcriptional responses that promote inflammation. While certainly true, the work of my lab and that of others supports a more sophisticated view in which macrophages integrate information about the nature of engulfed pathogens in order to fashion unique responses. Using quantitative cell-mapping technologies including CRISPR genetics and mass spectrometry-based proteomics, my lab has found that macrophages can discriminate virulent from non-virulent M. tuberculosis at the earliest stages of infection. These changes play fundamental roles in shaping the innate responses to infection and can work to restrict bacterial growth in dramatic fashion. This avenue of research represents a vast area for new biological discovery and we seek to understand the function and mechanism of the pathways elicited, to identify pathogen strategies for averting these effects, and to harness this powerful anti-infection system for therapeutic purposes.
Tuberculosis has been a major global health concern for well over a century. Although many potential treatments have been vigorously pursued, conventional strategies have failed to eradicate TB infection and, in fact, the global threat has grown over the last couple decades. I believe that failure results in part from the fact that such attempts have neglected to take into account the deeply integrated, symbiotic-like relationship between Mycobacterium tuberculosis and its host that has developed over 40,000 years of human/bacterial co-evolution. My research group aims to understand the key mechanisms that dictate the M. tuberculosis-human relationship with the goal of breaking these ties, targeting either host or pathogen factors to eliminate M. tuberculosis infection and, with that, to contribute to solving a steadily increasing threat in global health. In particular, while current vaccine strategies aimed at promoting specific immune responses (e.g. T-cells and cytokines) to various M. tuberculosis antigens have failed, we believe that promoting innate responses of host cell macrophages, the cell type where M. tuberculosis grows, represents an unconventional strategy to block bacterial infection.
Our perspective on M. tuberculosis infection has been shaped primarily from our results showing that macrophages have unexpected potential to intrinsically control bacterial viability and to shape specific immune responses. Conventional wisdom in the innate immunity field is that detection of pathogens is accomplished by cellular receptors that recognize unique molecular structures of microbes, giving rise to stereotypical transcriptional responses that promote inflammation. While certainly true, the work of my lab and that of others supports a more sophisticated view in which macrophages integrate information about the nature of engulfed pathogens in order to fashion unique responses. Using quantitative cell-mapping technologies including CRISPR genetics and mass spectrometry-based proteomics, my lab has found that macrophages can discriminate virulent from non-virulent M. tuberculosis at the earliest stages of infection. These changes play fundamental roles in shaping the innate responses to infection and can work to restrict bacterial growth in dramatic fashion. This avenue of research represents a vast area for new biological discovery and we seek to understand the function and mechanism of the pathways elicited, to identify pathogen strategies for averting these effects, and to harness this powerful anti-infection system for therapeutic purposes.
Research Interests
Papers共 82 篇Author StatisticsCo-AuthorSimilar Experts
By YearBy Citation主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
Sonali S Mali, Ricardo Silva,Zhongyan Gong,Michael Cronce, Uyen Vo,Cliff Vuong,Yalda Moayedi,Jeffery S Cox,Diana M Bautista
bioRxiv the preprint server for biology (2024)
Robyn M. Jong,Krystal L. Ching,Nicholas E. Garelis, Alex Zilinskas,Xammy Nguyenla,Sagar Rawal, Bianca C. Hill, Bridget A. Luckie, Lillian Shallow,Jeffery S. Cox,Gregory M. Barton,Sarah A. Stanley
biorxiv(2022)
Huntly M. Morrison, Julia Craft,Rafael Rivera-Lugo,Jeffery R. Johnson,Guillaume R. Golovkine,Claire E. Dodd,Erik Van Dis,Wandy L. Beatty,Shally R. Margolis,Teresa Repasy, Isaac Shaker,Angus Y. Lee,Russell E. Vance, Sarah A. Stanley,Nevan J. Krogan,Dan A. Portnoy,Bennett H. Penn,Jeffery S. Cox
crossref(2022)
Jeffrey R. Johnson,David C. Crosby,Judd F. Hultquist,Andrew P. Kurland,Prithy Adhikary,Donna Li,John Marlett,Justine Swann,Ruth Huttenhain,Erik Verschueren,Tasha L. Johnson,Billy W. Newton,Michael Shales,Viviana A. Simon,Pedro Beltrao,Alan D. Frankel,Alexander Marson,Jeffery S. Cox,Oliver Fregoso,John A. T. Young,Nevan J. Krogan
Cell Reportsno. 2 (2022)
Joseph Hiatt,Devin A. Cavero,Michael J. McGregor,Weihao Zheng,Jonathan M. Budzik,Theodore L. Roth,Kelsey M. Haas,David Wu,Ujjwal Rathore,Anke Meyer-Franke,Mohamed S. Bouzidi,Eric Shifrut,Youjin Lee, Vigneshwari Easwar Kumar,Eric Dang,David E. Gordon,Jason A. Wojcechowskyj,Judd F. Hultquist,Krystal A. Fontaine,Satish K. Pillai,Jeffery S. Cox,Joel D. Ernst,Nevan J. Krogan,Alexander Marson
Cell Reportsno. 6 (2021): 109105-109105
biorxiv(2020)
Load More
Author Statistics
#Papers: 84
#Citation: 11871
H-Index: 47
G-Index: 71
Sociability: 7
Diversity: 3
Activity: 15
Co-Author
Co-Institution
D-Core
- 合作者
- 学生
- 导师
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn