Photocatalytic inactivation mechanism of nano-BiPO4 against Vibrio parahaemolyticus and its application in abalone

FOOD RESEARCH INTERNATIONAL(2024)

引用 0|浏览0
暂无评分
摘要
Vibrio parahaemolyticus (V. parahaemolyticus) is the main pathogenic bacteria in seafood that can cause serious food-borne illness. The annual incidence of V. parahaemolyticus infection in the United States exceeds 45,000 cases, indicating there are potential shortcomings in seafood sterilization techniques. Meanwhile, the ongoing emergence of antibiotic-resistant strains highlights the urgent need for novel bacteriostatic strategies to eliminate V. parahaemolyticus. Nano-BiPO4 is a semiconductor with high H2O2 production efficiency and has potential for photocatalytic bacterial inactivation. But the effectiveness and mechanism of BiPO4 photocatalytic inactivation of V. parahaemolyticus has not been reported. In this study, nano-BiPO4 synthesized in pure water (P1) was found to exhibit optimal H2O2 production efficiency (1203 mu mol h(-1)g(-1)) and antibacterial activity (in 0.8 g/L). Under UV light irradiation, P1 induced alterations in bacterial cell morphology, elevation in intracellular levels of ROS, H2O2, O-2-, GSSG and MDA, and reduction in GSH level. Meanwhile, metabolomic analysis revealed that P1 stimulates the arginine biosynthesis, TCA cycle and alanine, aspartate and glutamate metabolism. These abnormal changes in the oxidative stress indicators and metabolic pathways proved that the bacterial damage was related to the H2O2 produced by nano-BiPO4 photocatalysis. Moreover, sliced abalone and hemolysis assay were used to demonstrate the applicability and biosafety of P1. This study provides theoretical support for exploring nano-BiPO4 as a bacterial inhibitor against V. parahaemolyticus.
更多
查看译文
关键词
Vibrio parahaemolyticus,Nano-BiPO4,Photocatalytic inactivation,H2O2,Metabolomic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要