Chrome Extension
WeChat Mini Program
Use on ChatGLM

Dixon Techniques for Water and Fat Imaging

Journal of Magnetic Resonance Imaging(2008)SCI 2区

Univ Texas MD Anderson Canc Ctr

Cited 505|Views16
Abstract
In 1984, Dixon published a first paper on a simple spectroscopic imaging technique for water and fat separation. The technique acquires two separate images with a modified spin echo pulse sequence. One is a conventional spin echo image with water and fat signals in-phase and the other is acquired with the readout gradient slightly shifted so that the water and fat signals are 180 degrees out-of-phase. Dixon showed that from these two images, a water-only image and a fat-only image can be generated. The water-only image by the Dixon's technique can serve the purpose of fat suppression, an important and widely used imaging option for clinical MRI. Additionally, the availability of both the water-only and fat-only images allows direct image-based water and fat quantitation. These applications, as well as the potential that the technique can be made highly insensitive to magnetic field inhomogeneity, have generated substantial research interests and efforts from many investigators. As a result, significant improvement to the original technique has been made in the last 2 decades. The following article reviews the underlying physical principles and describes some major technical aspects in the development of these Dixon techniques.
More
Translated text
Key words
water and fat separation,Dixon imaging,phase correction,phase unwrapping,fat suppression,chemical shift imaging
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers

Quantitative Mr In Multi-Center Clinical Trials

JOURNAL OF MAGNETIC RESONANCE IMAGING 2010

被引用20

Adipose tissue segmentation in whole-body MRI

Erik Cederberg
2010

被引用23

Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest