基本信息
浏览量:7
职业迁徙
个人简介
Our research employs a broad range of biochemical, biophysical and molecular biology approaches to elucidate enzyme mechanisms, protein structure-function relationships, mechanisms of posttranslational modification of proteins, and biological energy metabolism.A general goal of this research is to describe how specific enzymes control the transfer of reactive electrons and the activation of molecular oxygen, while minimizing oxidative damage. The ability to do this is central to cell development, health and survival. Reactive oxygen species and free radicals are produced as by-products of biological electron transfer and oxygen metabolism. Defining the mechanisms of long range electron transfer reactions will enhance our understanding of the fundamental processes of respiration and intermediary metabolism at the molecular level. An understanding of the mechanisms of control of biological electron transfer reactions will provide insight into how defective protein electron transfer leads to production of free radicals and reactive oxygen species which cause non-specific oxidative damage to cell components that is associated with mitochondrial myopathies, oxidative stress, many disease states, and aging.Free radicals and reactive oxygen species are also required for, and used productively in biosynthetic processes. An example of such a process is the biosynthesis of protein-derived cofactors. Recent advances in enzymology, structural biology and protein chemistry have documented that catalytic and redox-active prosthetic groups may be derived from posttranslational modification of amino acid residues of proteins. These protein-derived cofactors typically arise from oxygenation of aromatic residues, covalent cross-linking of amino acid residues, or cyclization or cleavage of internal amino acid residues. Studies of the biosynthesis and function of protein-derived cofactors are revealing novel chemical mechanisms for both the biosynthesis of the cofactors and the reactions that they subsequently catalyze. The characterizations of protein-derived cofactors and their mechanisms of biosynthesis introduces a new dimension to our current views about protein evolution and protein structure-function relationships, and provides insight for protein engineering strategies to introduce new functional groups into proteins.
研究兴趣
论文共 289 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
Archives of biochemistry and biophysics (2021): 108917-108917
Principles and Applications of Quinoproteinspp.73-96, (2020)
Principles and Applications of Quinoproteinspp.3-14, (2020)
加载更多
作者统计
#Papers: 289
#Citation: 7771
H-Index: 49
G-Index: 75
Sociability: 6
Diversity: 3
Activity: 9
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn