基本信息
浏览量:13
职业迁徙
个人简介
Research Summary
Coordination-driven self-assembly is a synthetic methodology capable of delivering diverse, tunable architectures, yet is currently underdeveloped as a tool to address the chemistry of energy conversion. In particular, the ability to independently design molecular subunits with specific properties which can combine into multifunctional scaffolds provides a method to generate functionally complex yet synthetically facile materials. The Cook Group exploits coordination-driven self-assembly to explore energy-relevant materials with modular photo-, redox- and catalytically active building blocks that can rapidly incorporate new molecular discoveries relevant to energy harvesting, storage, and use.
Our research program is rooted in fundamental structural, photophysical and electrochemical characterization techniques applied towards discrete supramolecular coordination complexes (SCCs) formed using the principles of molecular self-assembly and coordination chemistry. Primary thrusts include:
(1) Light Harvesting Metallacycles and Cages via Self-Assembly
The efficient capture of solar energy requires materials that strongly absorb across the visible spectrum so as to effectively match the solar flux. Chemical approaches to new light harvesting materials often rely on the organization of molecular units, inspired by nature’s photosystems. The precedent for strongly absorbing metal and organic-based molecules motivates our design of discrete supramolecular coordination complexes containing complementary chromophores.
Coordination-driven self-assembly is a synthetic methodology capable of delivering diverse, tunable architectures, yet is currently underdeveloped as a tool to address the chemistry of energy conversion. In particular, the ability to independently design molecular subunits with specific properties which can combine into multifunctional scaffolds provides a method to generate functionally complex yet synthetically facile materials. The Cook Group exploits coordination-driven self-assembly to explore energy-relevant materials with modular photo-, redox- and catalytically active building blocks that can rapidly incorporate new molecular discoveries relevant to energy harvesting, storage, and use.
Our research program is rooted in fundamental structural, photophysical and electrochemical characterization techniques applied towards discrete supramolecular coordination complexes (SCCs) formed using the principles of molecular self-assembly and coordination chemistry. Primary thrusts include:
(1) Light Harvesting Metallacycles and Cages via Self-Assembly
The efficient capture of solar energy requires materials that strongly absorb across the visible spectrum so as to effectively match the solar flux. Chemical approaches to new light harvesting materials often rely on the organization of molecular units, inspired by nature’s photosystems. The precedent for strongly absorbing metal and organic-based molecules motivates our design of discrete supramolecular coordination complexes containing complementary chromophores.
研究兴趣
论文共 157 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
ACS APPLIED MATERIALS & INTERFACESno. 8 (2024): 11116-11124
INORGANIC CHEMISTRY FRONTIERSno. 17 (2024): 5557-5565
CHEMISTRY OF MATERIALSno. 9 (2024): 4185-4195
INORGANIC CHEMISTRYno. 29 (2024): 13157-13165
Shwetha Prakash,Xiaoli Ge,Heshali K. Welgama,Pratahdeep Gogoi, Mayuresh Janpandit,Timothy R. Cook,Yuguang C. Li
ENERGY & FUELSno. 7 (2024): 6223-6229
Inorganic Chemistryno. 4 (2023): 1455-1465
Organic Photonic Materials and Devices XXV (2023)
加载更多
作者统计
#Papers: 159
#Citation: 15248
H-Index: 47
G-Index: 112
Sociability: 6
Diversity: 3
Activity: 31
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn