基本信息
浏览量:14
职业迁徙
个人简介
His current research focuses on metal combustion as it relates to the military and aerospace industries. He and MechSE colleague Herman Krier are working together to develop a better understanding of how aluminum burns. (Aluminum constitutes about 20 percent of the fuel in solid rocket engines used on the Space Shuttle.) They are also investigating aluminum hydride, an alternative to aluminum that may produce better range and performance, but may also have undesirable features.
His research on metal combustion makes use of the shock tube facility developed by Professor Krier and Professor Rodney Burton of the Department of Aerospace Engineering. The shock tube provides the only way to conduct controlled experiments with metal particles, experiments that previously were not possible. Using the shock tube facility, Professors Glumac and Krier are able to test the validity of existing hypotheses about metal combustion. One theory suggested that aluminum always burns faster in water vapor than in carbon dioxide. The controlled environment of the shock tube provided a way for them to test this theory by directly comparing oxidation rates of aluminum in water vapor, carbon dioxide and oxygen. They learned that carbon dioxide is an increasingly important oxidizer for aluminum, particularly with small particle diameters. Another theory predicted that at small particle sizes, aluminum converts from diffusion limited combustion to kinetic limited combustion. The particle size at which that transition occurs had been unknown until experiments by Professors Glumac and Krier revealed that diffusion limited combustion begins to break down at particle sizes of 10 microns and smaller.
His research on metal combustion makes use of the shock tube facility developed by Professor Krier and Professor Rodney Burton of the Department of Aerospace Engineering. The shock tube provides the only way to conduct controlled experiments with metal particles, experiments that previously were not possible. Using the shock tube facility, Professors Glumac and Krier are able to test the validity of existing hypotheses about metal combustion. One theory suggested that aluminum always burns faster in water vapor than in carbon dioxide. The controlled environment of the shock tube provided a way for them to test this theory by directly comparing oxidation rates of aluminum in water vapor, carbon dioxide and oxygen. They learned that carbon dioxide is an increasingly important oxidizer for aluminum, particularly with small particle diameters. Another theory predicted that at small particle sizes, aluminum converts from diffusion limited combustion to kinetic limited combustion. The particle size at which that transition occurs had been unknown until experiments by Professors Glumac and Krier revealed that diffusion limited combustion begins to break down at particle sizes of 10 microns and smaller.
研究兴趣
论文共 231 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
Combustion and Flame (2024): 113468-113468
JOURNAL OF ENERGETIC MATERIALSno. 1 (2024): 146-167
Applied Spectroscopy (2024)
Applied opticsno. 29 (2023): 7643-7657
Applied opticsno. 6 (2023): 1598-1598
Proceedings of the Combustion Instituteno. 1 (2023): 1249-1257
加载更多
作者统计
#Papers: 230
#Citation: 5189
H-Index: 37
G-Index: 66
Sociability: 6
Diversity: 2
Activity: 12
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn