基本信息
浏览量:2
职业迁徙
个人简介
Substitutionally inert ruthenium complexes bearing benzimidazole derivatives have unique electrochemical and photochemical properties. In particular, proton coupled electron transfer (PCET) in ruthenium–benzimidazole complexes leads to rich redox chemistry, which allows e.g. the tuning of redox potentials or switching by deprotonation. Using the background knowledge from acquired from their solution-state chemistry, Ru complexes immobilized on electrode surfaces have been developed and these offer new research directions toward functional molecular devices. The integration of surface-immobilized redox-active Ru complexes with multilayer assemblies via the layer-by-layer (LbL) metal coordination method on ITO electrodes provides new types of functionality. To control the molecular orientation of the complexes on the ITO surface, free-standing tetrapodal phosphonic acid anchor groups were incorporated into tridentate 2,6-bis(benzimidazole-2-yl)pyridine or benzene ligands. The use of the LbL layer growth method also enables “coordination programming” to fabricate multilayered films, as a variety of Ru complexes with different redox potentials and pKa values are available for incorporation into homo- and heterolayer films. Based on this strategy, many functional devices, such as scalable redox capacitors for energy storage, photo-responsive memory devices, proton rocking-chair-type redox capacitors, and protonic memristor devices have been successfully fabricated. Further applications of anchored Ru complexes in photoredox catalysis and dye-sensitized solar cells may be possible. Therefore, surface-confined Ru complexes exhibit great potential to contribute to the development of advanced functional molecular devices.
研究兴趣
论文共 161 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
CHEMELECTROCHEMno. 2 (2024)
INORGANIC CHEMISTRYno. 12 (2024): 5559-5567
Ruthenium - An Element Loved by Researchers (2022)
加载更多
作者统计
#Papers: 160
#Citation: 5492
H-Index: 42
G-Index: 70
Sociability: 6
Diversity: 3
Activity: 15
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn