基本信息
浏览量:0
职业迁徙
个人简介
Research focus
Deregulation of ubiquitin-mediated proteolysis including the APC/C-ubiquitin system is increasingly understood to underlie genome instability. Genome instability is key to both the etiology and treatment of several human diseases. Greater understanding of APC/C function will therefore be of great benefit for human health. Although 20 years have passed since its discovery, our understanding of the APC/C function and control is lamentably limited. This is partly due to the sheer size and complexity of the enzyme. In fact, it was impossible to reconstitute apo-APC/C until recently. However, our latest development APC/C re-constitution using the MultiBac system will enable us to manipulate APC/C function at will and together with the Xenopus egg system, detailed analysis of the ‘dynamic regulation’ of vertebrate APC/Cs can be achieved to a level never attained before.
CDK1 and APC/C are two key regulatory enzymes controlling the cell division, growth, differentiation and death, through phosphorylation and ubiquitylation, respectively. Although it has long been apparent that phosphorylation modifies APC/C function, the challenges posed by the need for functional assays to study this control put the elucidation of molecular basis of phosphorylation control beyond our grasp. We recently overcame these limitations with a pipeline that uses reconstituted recombinant APC/C in Xenopus cell free extracts to show how CDK1 activates the APC/C through coordinated phosphorylation of Apc3 and Apc1 (Fujimitsu, K. et al., Science 2016). We will now extend this pipeline with targeted assays that will determine how phosphatases and APC/C binding proteins regulate these phosphorylation events.
Deregulation of ubiquitin-mediated proteolysis including the APC/C-ubiquitin system is increasingly understood to underlie genome instability. Genome instability is key to both the etiology and treatment of several human diseases. Greater understanding of APC/C function will therefore be of great benefit for human health. Although 20 years have passed since its discovery, our understanding of the APC/C function and control is lamentably limited. This is partly due to the sheer size and complexity of the enzyme. In fact, it was impossible to reconstitute apo-APC/C until recently. However, our latest development APC/C re-constitution using the MultiBac system will enable us to manipulate APC/C function at will and together with the Xenopus egg system, detailed analysis of the ‘dynamic regulation’ of vertebrate APC/Cs can be achieved to a level never attained before.
CDK1 and APC/C are two key regulatory enzymes controlling the cell division, growth, differentiation and death, through phosphorylation and ubiquitylation, respectively. Although it has long been apparent that phosphorylation modifies APC/C function, the challenges posed by the need for functional assays to study this control put the elucidation of molecular basis of phosphorylation control beyond our grasp. We recently overcame these limitations with a pipeline that uses reconstituted recombinant APC/C in Xenopus cell free extracts to show how CDK1 activates the APC/C through coordinated phosphorylation of Apc3 and Apc1 (Fujimitsu, K. et al., Science 2016). We will now extend this pipeline with targeted assays that will determine how phosphatases and APC/C binding proteins regulate these phosphorylation events.
研究兴趣
论文共 76 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
EMBO REPORTSno. 3 (2024): 1685-1685
CELL REPORTSno. 6 (2024)
Tomohiro Hino,Satoshi N. Omura,Ryoya Nakagawa,Tomoki Togashi,Satoru N. Takeda,Takafumi Hiramoto, Satoshi Tasaka,Hisato Hirano,Takeshi Tokuyama,Hideki Uosaki,Soh Ishiguro,Madina Kagieva,Hiroyuki Yamano,Yuki Ozaki,Daisuke Motooka,Hideto Mori,Yuhei Kirita,Yoshiaki Kise,Yuzuru Itoh,Satoaki Matoba,Hiroyuki Aburatani,Nozomu Yachie,Tautvydas Karvelis,Virginijus Siksnys,Tsukasa Ohmori,Atsushi Hoshino,Osamu Nureki
Cellno. 22 (2023): 4920-+
Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature (2023)
Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature (2019)
加载更多
作者统计
#Papers: 76
#Citation: 3870
H-Index: 29
G-Index: 62
Sociability: 6
Diversity: 0
Activity: 0
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn