基本信息
浏览量:763
职业迁徙
个人简介
Gabor A. Somorjai was born in Budapest, Hungary, on May 4, 1935.
Since 1965, Professor Somorjai has proposed, planned, and carried out a program to build the fundamental molecular basis for the surface science of heterogeneous catalysis. He characterized the structure of clean metal single crystal surfaces and determined the structure and bonding of adsorbed molecules, and used them as model catalysts. He synthesized and characterized metal and bimetallic nanoparticles in the 1-10 nm range and also used them as model catalysts as two-dimensional deposits or in three-dimensional form supported on mezoporous oxide or polymer surfaces and carried out catalytic reactions on these surfaces. He developed much of the instrumentation necessary for studying molecular surface chemistry and catalysis at high reactant pressures (atmospheres) on the small area crystals and nanoparticles. These include high pressure reaction cells that are combined with ultra high vacuum surface characterization chambers, sum frequency generation (SFG) vibrational spectroscopy, and scanning tunneling microscopy (STM), which can be used to monitor surfaces under reaction conditions, in situ. X-ray spectroscopy techniques that are synchrotron-based (ambient pressure XPS, NEXAFS and EXAFS) are also employed to monitor surfaces under reaction conditions. The reactions studied include hydrocarbon conversion and found that catalytic selectivity depends on metal nanoparticle size and shape. Small metal nanoparticles were found to be able to hetrogenize homogeneous solution phase catalytic reactions. Solid-liquid biointerfaces are studied to determine the structures of amino acids and peptides. Professor Somorjai has educated a generation of leading scientists in the field. Out of more than 130 Ph.D. students and 200 Posdoctoral Fellows, about 100 hold faculty positions.
Since 1965, Professor Somorjai has proposed, planned, and carried out a program to build the fundamental molecular basis for the surface science of heterogeneous catalysis. He characterized the structure of clean metal single crystal surfaces and determined the structure and bonding of adsorbed molecules, and used them as model catalysts. He synthesized and characterized metal and bimetallic nanoparticles in the 1-10 nm range and also used them as model catalysts as two-dimensional deposits or in three-dimensional form supported on mezoporous oxide or polymer surfaces and carried out catalytic reactions on these surfaces. He developed much of the instrumentation necessary for studying molecular surface chemistry and catalysis at high reactant pressures (atmospheres) on the small area crystals and nanoparticles. These include high pressure reaction cells that are combined with ultra high vacuum surface characterization chambers, sum frequency generation (SFG) vibrational spectroscopy, and scanning tunneling microscopy (STM), which can be used to monitor surfaces under reaction conditions, in situ. X-ray spectroscopy techniques that are synchrotron-based (ambient pressure XPS, NEXAFS and EXAFS) are also employed to monitor surfaces under reaction conditions. The reactions studied include hydrocarbon conversion and found that catalytic selectivity depends on metal nanoparticle size and shape. Small metal nanoparticles were found to be able to hetrogenize homogeneous solution phase catalytic reactions. Solid-liquid biointerfaces are studied to determine the structures of amino acids and peptides. Professor Somorjai has educated a generation of leading scientists in the field. Out of more than 130 Ph.D. students and 200 Posdoctoral Fellows, about 100 hold faculty positions.
研究兴趣
论文共 1514 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
ANGEWANDTE CHEMIE-INTERNATIONAL EDITIONno. 35 (2024)
Scienceno. 6640 (2023): 70-76
The Handbook of Surface Imaging and Visualizationpp.767-782, (2022)
The Handbook of Surface Imaging and Visualizationpp.493-515, (2022)
加载更多
作者统计
#Papers: 1536
#Citation: 109620
H-Index: 155
G-Index: 273
Sociability: 8
Diversity: 0
Activity: 1
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn