基本信息
浏览量:295
职业迁徙
个人简介
My research focuses on machine learning tools that help humans make better decisions, mainly interpretable machine learning and its applications. We work on decision trees, sparse linear models and scoring systems, variable importance measures, causal inference methods, interpretable deep learning, dimension reduction, and methods that can incorporate domain-based constraints and other types of domain knowledge into machine learning. These techniques are applied to critical societal problems in healthcare, criminal justice and energy grid reliability, as well as to materials science and computer vision. Many of our interpretable machine learning algorithms heavily rely on efficient discrete optimization techniques.
研究兴趣
论文共 286 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
Harvard Data Science Reviewno. 3 (2024)
NEJM AIno. 6 (2024)
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238 (2024)
CoRR (2024)
NeurIPS 2024 (2024)
引用0浏览0引用
0
0
ELIFE (2024)
IEEE journal of biomedical and health informaticsno. 5 (2024): 2650-2661
NeurIPS 2024 (2024)
引用0浏览0引用
0
0
Frank Willard, Luke Moffett, Emmanuel Mokel,Jon Donnelly, Stark Guo, Julia Yang, Giyoung Kim,Alina Jade Barnett,Cynthia Rudin
CoRR (2024)
引用0浏览0EI引用
0
0
加载更多
作者统计
#Papers: 284
#Citation: 12926
H-Index: 47
G-Index: 110
Sociability: 6
Diversity: 2
Activity: 160
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn