基本信息
浏览量:18
职业迁徙
个人简介
My goal is to understand and improve the algorithms that researchers can use to learn about the structure of an underlying system from data and reason about intervening in such a system.
Structure learning and hypothesis testing -- What we assume about the underlying causal structure affects how we understand data and the association between variables. I am interested in learning from data alone the invariant features of the underlying causal graph, with a particular interest in problems involve complex data types. In recent work, we showed how to learn local independence graphs from irregularly-sampled time series data.
Structure learning and hypothesis testing -- What we assume about the underlying causal structure affects how we understand data and the association between variables. I am interested in learning from data alone the invariant features of the underlying causal graph, with a particular interest in problems involve complex data types. In recent work, we showed how to learn local independence graphs from irregularly-sampled time series data.
研究兴趣
论文共 37 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
arxiv(2024)
引用0浏览0引用
0
0
ICLR 2023 (2023)
引用0浏览0引用
0
0
UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (2023): 756-765
AAAI Bridge Programpp.1-10, (2023)
引用3浏览0EI引用
3
0
加载更多
作者统计
#Papers: 37
#Citation: 450
H-Index: 13
G-Index: 21
Sociability: 4
Diversity: 0
Activity: 1
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn