BIRD: Efficient Approximation of Bidirectional Hidden Personalized PageRank.
PROCEEDINGS OF THE VLDB ENDOWMENT(2024)
Abstract
In bipartite graph analysis, similarity measures play a pivotal role in various applications. Among existing metrics, the Bidirectional Hidden Personalized PageRank (BHPP) stands out for its superior query quality. However, the computational expense of BHPP remains a bottleneck. Existing approximation methods either demand significant matrix storage or incur prohibitive time costs. For example, current state-of-the-art methods require over 3 hours to process a single-source BHPP query on the real-world bipartite graph Orkut , which contains approximately 3 × 10 8 edges. We introduce BIRD, a novel algorithm designed for answering single-source BHPP queries on weighted bipartite graphs. Through meticulous theoretical analysis, we demonstrate that BIRD significantly improves time complexity to Õ ( n ), as compared to the previous best one, Õ ( m ), under typical relative error setting and constant failure probability. ( n, m denote the number of nodes and edges respectively.) Extensive experiments confirm that BIRD outperforms existing baselines by orders of magnitude in large-scale bipartite graphs. Notably, our proposed method accomplishes a single-source BHPP query on Orkut using merely 7 minutes.
MoreTranslated text
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
Pharmaceuticals 2021
被引用2
Regulatory Variants at 2q33.1 Confer Schizophrenia Risk by Modulating Distal Gene TYW5 Expression.
Brain 2021
被引用4
<i>Quo</i><i> vadis</i> PGRMC? Grand-Scale Biology in Human Health and Disease
Frontiers in bioscience (Landmark edition) 2022
被引用3
Transcriptomic Identification of Genes Expressed in Invasive S. Aureus Diabetic Foot Ulcer Infection
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY 2023
被引用0
FREE RADICAL BIOLOGY AND MEDICINE 2024
被引用1
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest