In Vitro Efficacy of Phage Therapy Against Common Biofilm-forming Pathogens in Orthopedics and Trauma Surgery.
Zeitschrift fur Orthopadie und Unfallchirurgie(2025)
Abstract
Formation of biofilms by bacteria is a major challenge in a clinical setting. The importance of these biofilms increases in specialties where foreign bodies and prosthetic material are used. Orthopaedics is such a speciality and phage therapy could offer additional therapeutic options when dealing with biofilm infections.We conducted a systematic literature review using the PubMed database. We searched for phage activity against biofilms of the most common pathogens found in orthopaedics.The results of the systematic review were broken down into different categories and discussed accordingly. We concentrated on the time the biofilms were allowed to mature, and the surface they were grown on. In addition, we checked the efficacy of bacteriophages compared to antibiotics and when applied simultaneously with antibiotics. We also investigated the source of the phages, how they were tested for sensibility against the biofilms, as well the conditions (pH, temperature) under which they remained active and stable.The data suggests that the in vitro efficacy of phages does not change under a wide spectrum of temperature and pH. To further explore the use of bacteriophages in orthopaedics, we need further studies that test biofilms which matured for several weeks on surfaces that are common in arthroplasty and traumatology.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper