Chrome Extension
WeChat Mini Program
Use on ChatGLM

Myocardial Fibroblast Activation after Acute Myocardial Infarction: A Positron Emission Tomography and Magnetic Resonance Study

Anna K. Barton,Neil J. Craig Stephanie Sellers,Alison Fletcher

Journal of the American College of Cardiology(2025)

Norwich Medical School | Uppsala Clinical Research Center | Edinburgh Imaging Facility

Cited 0|Views0
Abstract
Background Myocardial fibrosis is a key healing response after myocardial infarction driven by activated fibroblasts. Gallium-68-labeled fibroblast activation protein inhibitor ([68Ga]-FAPI) is a novel positron-emitting radiotracer that binds activated fibroblasts. Objectives The aim of this study was to investigate the intensity, distribution, and time-course of fibroblast activation after acute myocardial infarction. Methods A total of 40 patients with acute myocardial infarction underwent hybrid [68Ga]FAPI-46 positron emission tomography and cardiac magnetic resonance and were compared with matched control subjects (n = 19) and those with chronic (>2 years) myocardial infarction (n = 20). Intensity of [68Ga]FAPI-46 uptake was quantified by maximum target-to-background ratio (TBRmax). Burdens of fibroblast activation and scar were assessed by percent myocardial involvement of [68Ga]FAPI-46 uptake and late gadolinium enhancement, respectively. Results Myocardial [68Ga]FAPI-46 uptake was observed in the acute infarct and peri-infarct regions that exceeded the extent of late gadolinium enhancement (burden 27.8% ± 12.4% vs 15.2% ± 10.6%; P < 0.001). One-third of patients also demonstrated right ventricular involvement. Myocardial [68Ga]FAPI-46 uptake was most intense at 1 and 2 weeks before declining at 4 and 12 weeks (TBRmax 4.0 ± 1.1, 3.7 ± 1.0, 3.1 ± 0.8, and 2.7 ± 0.7; P < 0.001). In comparison with control subjects, increased [68Ga]FAPI-46 uptake was observed in chronic (7 ± 6 years ago) infarcts at lower intensity than acute infarction (TBRmax 1.2 ± 0.1 vs 1.7 ± 0.5 vs 4.0 ± 1.1; P < 0.001). Baseline [68Ga]FAPI-46 burden correlated with lower left ventricular ejection fraction (r = −0.606), higher indexed left ventricular end-diastolic volume (r = 0.572), and higher scar burden (r = 0.871) at 1 year (P < 0.001 for all). Increased remote myocardial [68Ga]FAPI-46 uptake was associated with left ventricular dilatation and systolic dysfunction. Conclusions Myocardial fibroblast activation peaks within a week of acute myocardial infarction and extends beyond the infarct region. It declines slowly with time, persists for years, and is associated with subsequent left ventricular remodeling. (PROFILE-MI–The FAPI Fibrosis Study; NCT05356923)
More
Translated text
Key words
fibroblast activation protein inhibitor,molecular PET,myocardial Infarction
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest