Endothelial FUNDC1 Deficiency Drives Pulmonary Hypertension
Circulation research(2024)
Department of Cardiology | Department of Anesthesiology (Y. Wu | Department of Cardiology (Y.J. | School of Medical Laboratory
Abstract
BACKGROUND:Pulmonary hypertension (PH) is associated with endothelial dysfunction. However, the cause of endothelial dysfunction and its impact on PH remain incompletely understood. We aimed to investigate whether the hypoxia-inducible FUNDC1 (FUN14 domain-containing 1)-dependent mitophagy pathway underlies PH pathogenesis and progression. METHODS:We first analyzed FUNDC1 protein levels in lung samples from patients with PH and animal models. Using rodent PH models induced by HySu (hypoxia+SU5416) or chronic hypoxia, we further investigated PH pathogenesis and development in response to global and cell-type-specific Fundc1 loss/gain-of-function. We also investigated the spontaneous PH in mice with inducible loss of endothelial Fundc1. In addition, histological, metabolic, and transcriptomic studies were performed to delineate molecular mechanisms. Finally, findings were validated in vivo by compound deficiency of HIF2α (hypoxia-inducible factor 2α; Epas1) and pharmacological intervention. RESULTS:FUNDC1 protein levels were reduced in PH lung vessels from clinical subjects and animal models. Global Fundc1 deficiency exacerbated PH, while its overexpression was protective. The effect of FUNDC1 was mediated by endothelial cells rather than smooth muscle cells. Further, inducible loss of endothelial Fundc1 in postnatal mice was sufficient to cause PH spontaneously, whereas augmenting endothelial Fundc1 protected against PH before and after the onset of disease. Mechanistically, Fundc1 deficiency impaired basal mitophagy in endothelial cells, leading to the accumulation of dysfunctional mitochondria, metabolic reprogramming toward aerobic glycolysis, pseudohypoxia, and senescence, likely via a mtROS-HIF2α signaling pathway. Subsequently, Fundc1-deficient endothelial cells increased IGFBP2 (insulin-like growth factor-binding protein 2) secretion that drove pulmonary arterial remodeling to instigate PH. Finally, proof-of-principle in vivo studies showed significant efficacy on PH amelioration by targeting endothelial mitophagy, pseudohypoxia, senescence, or IGFBP2. CONCLUSIONS:Collectively, we show that FUNDC1-mediated basal mitophagy is critical for endothelial homeostasis, and its disruption instigates PH pathogenesis. Given that similar changes in FUNDC1 and IGFBP2 were observed in PH patients, our findings are of significant clinical relevance and provide novel therapeutic strategies for PH.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper