STAR: Sub-Entry Sharing-Aware TLB for Multi-Instance GPU
Annual IEEE/ACM International Symposium on Microarchitecture(2024)
University of Pittsburgh | Ghent University | NVIDIA
Abstract
NVIDIA's Multi-Instance GPU (MIG) technology enables partitioning GPU computing power and memory into sep-arate hardware instances, providing complete isolation including compute resources, caches, and memory. However, prior work identifies that MIG does not partition the last-level TLB (i.e., L3 TLB), which remains shared among all instances. To enhance TLB reach, NVIDIA GPUs reorganized the TLB structure with 16 sub-entries in each L3 TLB entry that have a one-to-one mapping to the address translations for 16 pages of size 64 KB located within the same 1 MB aligned range. Our comprehensive investigation of address translation efficiency in MIG identifies two main issues caused by L3 TLB sharing interference: (i) it results in performance degradation for co-running applications, and (ii) TLB sub-entries are not fully utilized before eviction. Based on this observation, we propose STAR to improve the utilization of TLB sub-entries through dynamic sharing of TLB entries across multiple base addresses. STAR evaluates TLB entries based on their sub-entry utilization to optimize address translation storage, dynamically adjusting between a shared and non-shared state to cater to current demand. We show that STAR improves overall performance by an average of 28.7% across various multi-tenant workloads.
MoreTranslated text
Key words
multi-instance GPU,sub-entry TLB
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper