Permafrost Instability Negates the Positive Impact of Warming Temperatures on Boreal Radial Growth
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA(2024)
Nat Resources Canada | No Arizona Univ | Yukon Univ | Laval Univ | LI COR Biosci
Abstract
Climate warming can alleviate temperature and nutrient constraints on tree growth in boreal regions, potentially enhancing boreal productivity. However, in permafrost environments, warming also disrupts the physical foundation on which trees grow, leading to leaning trees or “drunken” forests. Tree leaning might reduce radial growth, undermining potential benefits of warming. Here, we found widespread radial growth reductions in southern latitude boreal forests since the 1980s. At mid latitudes, radial growth increased from ~1980 to ~2000 but showed recent signs of decline afterward. Increased growth was evident since the 1980 s at higher latitudes, where radial growth appears to be temperature limited. However, recent changes in permafrost stability, and the associated increased frequency of tree leaning events, emerged as a significant stressor, leading to reduced radial growth in boreal trees at the highest latitudes, where permafrost is extensive. We showed that trees growing in unstable permafrost sites allocated more nonstructural carbohydrate reserves to offset leaning which compromised radial growth and potential carbon uptake benefits of warming. This higher allocation of resources in drunken trees is needed to build the high-density reaction wood, rich in lignin, that is required to maintain a vertical position. With continued climate warming, we anticipate widespread reductions in radial growth in boreal forests, leading to lower carbon sequestration. These findings enhance our understanding of how climate warming and indirect effects, such as ground instability caused by warming permafrost, will affect boreal forest productivity in the future.
MoreTranslated text
Key words
climate warming,tree leaning,reaction wood,stemwood non-structural carbohydrates,permafrost
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper