X-IFU Focal Plane Assembly Development Model Design Upgrade and Critical Technology Developments
SPACE TELESCOPES AND INSTRUMENTATION 2024 ULTRAVIOLET TO GAMMA RAY, PT 1(2024)
SRON | SRON Netherlands Institute for Space Research
Abstract
Within SRON a first Development Model (DM 1.0) of the X ray Integral Field Unit Focal Plane Assembly (X-IFU FPA) has been designed, realized and tested over the past years. Since the start of the FPA DM 1.0, the X-IFU instrument design has significantly evolved. Moreover, the recent Athena redefinition activities have resulted in a new overall planning in which the Mission Adoption Review (MAR) and X IFU instrument PDR are now foreseen for 2027. To ensure the required experimental feedback for FPA EM conceptual design is available by the time of the PDR an update of the existing FPA DM 1.0, called DM 1.1, is planned which better reflects the evolved instrument design. In the DM 1.1 the existing 4 channel Frequency Domain Multiplexing (FDM) readout is replaced by an 8 channel Time Domain Multiplexing (TDM) differential readout. A small sized TES array is replaced by a flight-sized kpixel array including full on-chip wiring, of which a limited subset is read-out. The interconnections between the main TES array and the SQUID Multiplexer (MUX) chips are realized in a manner which is flight scalable. Superconducting multilayer Niobium flex cables are used to route the TDM signals from the T0 detector stage at nominally 50 mK to the amplifier (AMP) SQUID stages and external interfaces at 2 K. This work describes the redesign performed on the X ray Integral Field Unit Focal Plane Assembly (X-IFU FPA) Development Model (DM) with a focus on the mechanical modifications of the T0 detector stage. In addition the development progress of several critical interconnection technologies used within the DM 1.1 is described. These include fixation of the main TES array to the metal support, a dedicated wire bonding process of the main TES array to the side panel MUX carrier chips and interconnection of the super-conducting Nb flex cables to the connecting Printed Circuit Boards (PCB).
MoreTranslated text
Key words
TES detector,interconnection technologies,superconducting Nb flex cable,high density wire bonding,cryogenic instrument design,SQUID magnetic shielding
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest