Chrome Extension
WeChat Mini Program
Use on ChatGLM

Novel Mn[N(CN)2]2 Anode with Cationic and Anionic Redox Chemistry for Li‐Ion Batteries

Advanced Functional Materials(2024)

Cited 0|Views3
No score
Abstract
Abstractα‐Mn[N(CN)2]2 (Pnnm) with divalent Mn2+ being octahedrally coordinated by six [N(CN)2]− dicyanamide (dca‒) complex anions is known since 1999. A novel β polymorph is now prepared and its structure characterized via powder X‐ray diffraction. β‐Mn[N(CN)2]2 also crystallizes orthorhombically (Cmcm) but with Mn2+ tetrahedrally coordinated to four [N(CN)2]− anions. Property‐wise, α‐Mn[N(CN)2]2 can be efficiently used as a negative electrode material for lithium‐ion batteries, maintaining a large reversible capacity of more than 600 mAh g−1 for 250 cycles tested at 0.5 C, comparing favorably to well‐established negative electrode references such as graphite (≈372 mAh g−1). The electrochemical lithiation/delithiation mechanism of α‐Mn[N(CN)2]2 is investigated using advanced characterization techniques and theoretical calculations. Upon lithiation, α‐Mn[N(CN)2]2 undergoes a reversible conversion reaction, forming LiN(CN)2 and metallic manganese, which are transformed back into α‐Mn[N(CN)2]2 upon delithiation. Further, there is evidence for reversible and additional charge/discharge processes on the dca‒ anion throughout the entire discharge/charge process in α‐Mn[N(CN)2]2, reflecting an anionic charge compensation. Moreover, density‐functional (DFT) and chemical‐bonding theory are employed to investigate the detailed anodic behavior of α‐Mn[N(CN)2]2 via conversion reaction during (de‐)lithiation processes. This mechanism, evidenced for the first time in transition metal dicyanamides, is likely behind its outstanding electrochemical properties.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined