谷歌浏览器插件
订阅小程序
在清言上使用

Comparative Analysis of the Codon Usage Pattern in the Chloroplast Genomes of Gnetales Species

Xiaoming Yang,Yuan Wang, Wenxuan Gong, Yinxiang Li

International Journal of Molecular Sciences(2024)

引用 0|浏览0
暂无评分
摘要
Codon usage bias refers to the preferential use of synonymous codons, a widespread phenomenon found in bacteria, plants, and animals. Codon bias varies among species, families, and groups within kingdoms and between genes within an organism. Codon usage bias (CUB) analysis sheds light on the evolutionary dynamics of various species and optimizes targeted gene expression in heterologous host plants. As a significant order of gymnosperms, species within Gnetales possess extremely high ecological and pharmaceutical values. However, comprehensive analyses of CUB within the chloroplast genomes of Gnetales species remain unexplored. A systematic analysis was conducted to elucidate the codon usage patterns in 13 diverse Gnetales species based on the chloroplast genomes. Our results revealed that chloroplast coding sequences (cp CDSs) in 13 Gnetales species display a marked preference for AT bases and A/T-ending codons. A total of 20 predominantly high-frequency codons and between 2 and 7 optimal codons were identified across these species. The findings from the ENC-plot, PR2-plot, and neutrality analyses suggested that both mutation pressure and natural selection exert influence on the codon bias in these 13 Gnetales species, with natural selection emerging as the predominant influence. Correspondence analysis (COA) demonstrated variation in the codon usage patterns among the Gnetales species and indicated mutation pressure is another factor that could impact CUB. Additionally, our research identified a positive correlation between the measure of idiosyncratic codon usage level of conservatism (MILC) and synonymous codon usage order (SCUO) values, indicative of CUB’s potential influence on gene expression. The comparative analysis concerning codon usage frequencies among the 13 Gnetales species and 4 model organisms revealed that Saccharomyces cerevisiae and Nicotiana tabacum were the optimal exogenous expression hosts. Furthermore, the cluster and phylogenetic analyses illustrated distinct patterns of differentiation, implying that codons, even with weak or neutral preferences, could affect the evolutionary trajectories of these species. Our results reveal the characteristics of codon usage patterns and contribute to an enhanced comprehension of evolutionary mechanisms in Gnetales species.
更多
查看译文
关键词
codon usage pattern,chloroplast genome,phylogenetic analysis,Gnetales
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要