谷歌浏览器插件
订阅小程序
在清言上使用

Three-dimensional Bioprinted Cell-Adaptive Hydrogel with Anisotropic Micropores for Enhancing Skin Wound Healing

Baozhang Shi, Tong Zhu,Yang Luo,Xiang Zhang,Jie Yao,Xu Cao,Yingchun Zhu, Hongyue Miao, Liangliang Li,Qin Song,Hua Zhang,Liping Xu

International journal of biological macromolecules(2024)

引用 0|浏览1
暂无评分
摘要
Engineered matrices with aligned microarchitectures are pivotal in regulating the fibroblast-to-myofibroblast transition, a critical process for wound healing and scar reduction. However, developing a three-dimensional (3D) aligned matrix capable of effectively controlling this transition remains challenging. Herein, we developed a cell-adaptive hydrogel with highly oriented microporous structures, fabricated through bioprinting of thermo/ion/photo-crosslinked gelatin methacrylate/sodium alginate (GelMA/SA) incorporating shear-oriented polyethylene oxide (PEO) filler. The synergistic interactions among GelMA, PEO, and SA yield a homogeneous mixture conducive to the printing of biomimetic 3D constructs with anisotropic micropores. These anisotropic micropores, along with the biochemical cues provided by the GelMA/PEO/SA scaffolds, enhance the oriented spreading and organization of fibroblasts. The resultant spread and aligned cellular morphologies promote the transition of fibroblasts into myofibroblasts. By co-culturing human keratinocytes on the engineered dermal layer, we successfully create a bilayer skin construct, wherein the keratinocytes establish tight junctions accompanied by elevated expression of cytokeratin-14, while the fibroblasts display a highly spread morphology with increased fibronectin expression. The printed hydrogels accelerate full-thickness wound closure by establishing a bioactive microenvironment that mitigate inflammation and stimulate angiogenesis, myofibroblast transition, and extracellular matrix remodeling. This anisotropic hydrogel demonstrates substantial promise for applications in skin tissue engineering.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要