Chrome Extension
WeChat Mini Program
Use on ChatGLM

Characterization of Non-Coding Variants Associated with Transcription Factor Binding Through ATAC-seq-defined Footprint QTLs in Liver

bioRxiv the preprint server for biology(2024)

University of Pennsylvania | Children's Hospital of Philadelphia

Cited 0|Views4
Abstract
Non-coding variants discovered by genome-wide association studies (GWAS) are enriched in regulatory elements harboring transcription factor (TF) binding motifs, strongly suggesting a connection between disease association and the disruption of cis-regulatory sequences. Occupancy of a TF inside a region of open chromatin can be detected in ATAC-seq where bound TFs block the transposase Tn5, leaving a pattern of relatively depleted Tn5 insertions known as a "footprint". Here, we sought to identify variants associated with TF-binding, or "footprint quantitative trait loci" (fpQTLs) in ATAC-seq data generated from 170 human liver samples. We used computational tools to scan the ATAC-seq reads to quantify TF binding likelihood as "footprint scores" at variants derived from whole genome sequencing generated in the same samples. We tested for association between genotype and footprint score and observed 693 fpQTLs associated with footprint-inferred TF binding (FDR < 5%). Given that Tn5 insertion sites are measured with base-pair resolution, we show that fpQTLs can aid GWAS and QTL fine-mapping by precisely pinpointing TF activity within broad trait-associated loci where the underlying causal variant is unknown. Liver fpQTLs were strongly enriched across ChIP-seq peaks, liver expression QTLs (eQTLs), and liver-related GWAS loci, and their inferred effect on TF binding was concordant with their effect on underlying sequence motifs in 80% of cases. We conclude that fpQTLs can reveal causal GWAS variants, define the role of TF binding site disruption in disease and provide functional insights into non-coding variants, ultimately informing novel treatments for common diseases.
More
Translated text
PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest