Dual Ablation of the RyR2-Ser2808 and RyR2-Ser2814 Sites Increases Propensity for Pro-Arrhythmic Spontaneous Ca2+ Releases.

Radoslav Janicek,Emmanuel M Camors, Duilio M Potenza, Miguel Fernandez-Tenorio,Yanting Zhao, Holly C Dooge, Randall Loaiza,Francisco J Alvarado,Marcel Egger,Hector H Valdivia,Ernst Niggli

The Journal of physiology(2024)

引用 0|浏览0
暂无评分
摘要
During exercise or stress, the sympathetic system stimulates cardiac contractility via β-adrenergic receptor (β-AR) activation, resulting in phosphorylation of the cardiac ryanodine receptor (RyR2). Three RyR2 phosphorylation sites have taken prominence in excitation-contraction coupling: S2808 and S2030 are described as protein kinase A specific and S2814 as a Ca2+/calmodulin kinase type-2-specific site. To examine the contribution of these phosphosites to Ca2+ signalling, we generated double knock-in (DKI) mice in which Ser2808 and Ser2814 phosphorylation sites have both been replaced by alanine (RyR2-S2808A/S2814A). These mice did not exhibit an overt phenotype. Heart morphology and haemodynamic parameters were not altered. However, they had a higher susceptibility to arrhythmias. We performed confocal Ca2+ imaging and electrophysiology experiments. Isoprenaline was used to stimulate β-ARs. Measurements of Ca2+ waves and latencies in myocytes revealed an increased propensity for spontaneous Ca2+ releases in DKI myocytes, both in control conditions and during β-AR stimulation. In DKI cells, waves were initiated from a lower threshold concentration of Ca2+ inside the sarcoplasmic reticulum, suggesting higher Ca2+ sensitivity of the RyRs. The refractoriness of Ca2+ spark triggering depends on the Ca2+ sensitivity of the RyR2. We found that RyR2-S2808A/S2814A channels were more Ca2+ sensitive in control conditions. Isoprenaline further shortened RyR refractoriness in DKI cardiomyocytes. Together, our results suggest that ablation of both the RyR2-Ser2808 and RyR2-S2814 sites increases the propensity for pro-arrhythmic spontaneous Ca2+ releases, as previously suggested for hyperphosphorylated RyRs. Given that the DKI cells present a full response to isoprenaline, the data suggest that phosphorylation of Ser2030 might be sufficient for β-AR-mediated sensitization of RyRs. KEY POINTS: Phosphorylation of cardiac sarcoplasmic reticulum Ca2+-release channels (ryanodine receptors, RyRs) is involved in the regulation of cardiac function. Ablation of both the RyR2-Ser2808 and RyR2-Ser2814 sites increases the propensity for pro-arrhythmic spontaneous Ca2+ releases, as previously suggested for hyperphosphorylated RyRs. The intra-sarcoplasmic reticulum Ca2+ threshold for spontaneous Ca2+ wave generation is lower in RyR2-double-knock-in cells. The RyR2 from double-knock-in cells exhibits increased Ca2+ sensitivity. Phosphorylation of Ser2808 and Ser2814 might be important for basal activity of the channel. Phosphorylation of Ser2030 might be sufficient for a β-adrenergic response.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要