谷歌浏览器插件
订阅小程序
在清言上使用

Linking Basin-Scale Hydrology with Climatic Parameters in Western Himalaya: Application of Satellite Data, Temperature Index Modelling and In-Situ Observations

Geoscience Frontiers(2024)

引用 0|浏览0
暂无评分
摘要
Due to limited spatial and temporal in-situ runoff data availability, Himalaya-Karakoram (HK) glaciohydrology has a significant knowledge gap between large-scale and small-scale runoff modelling studies. This study reconstructs longest basin-wide runoff series in Chandra-Bhaga Basin by applying a high-resolution glaciohydrological model SPHY (spatial processes in hydrology) over 1950–2022. Two-tier model calibration is done using in-situ basin-wide runoff (1973–2006) and MODIS snow cover (2003–2018). Model validation is done against in-situ Chhota Shigri Glacier catchment-wide runoff (2010–2015). The modelled mean annual basin-wide runoff is 60.21 ± 6.17 m3/s over 1950–2022, with maximum runoff in summer-monsoon months, peaking in July (182.69 m3/s). Glacier runoff (ice melt + snowmelt over glacier) contributes maximum (39 %) followed by equal contributions from snowmelt runoff from non-glacierized basin area and baseflow (25 %), while rainfall-runoff contributes minimum (11 %) to total runoff. There is a significant volumetric increase by ∼7 % from pre- (59.17 m3/s) to post-2000 (63.47 m3/s) mainly because of early onset of snowmelt post-2000 that resulted in a hydrograph shift by ∼25 days earlier in spring. The glacier runoff is overestimated by 3 % from RGI 7.0 inventory compared to different manually delineated inventories over 1950–2022, because of higher glacierized area from RGI 7.0. The precipitation shows a negative trend, but total runoff shows a positive trend due to positive trend of temperature that resulted in more glacier runoff and rainfall-runoff for basin over last 72 years. Basin-wide runoff is mainly governed by summer temperature which directly controls the amount of glacier and snowmelt runoffs and is supported by summer rainfall. This study highlights importance of basin-scale model calibration with in-situ data in large scale studies and stresses the need for in-situ observations in high-altitude Himalayan region. Basin-scale calibrated model parameters are transferable to glacier catchment scale within Chandra-Bhaga Basin, showing the model robustness at a small catchment scale.
更多
查看译文
关键词
Himalaya,Glaciohydrological model,Glacier runoff,Baseflow,Pre- and post-2000,Chandra-Bhaga Basin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要