谷歌浏览器插件
订阅小程序
在清言上使用

Extremely Durable Electrical Impedance Tomography–based Soft and Ultrathin Wearable E-Skin for Three-Dimensional Tactile Interfaces

Kyubeen Kim, Jung-Hoon Hong,Kyubin Bae, Kyounghun Lee, Doohyun J Lee, Junsu Park,Haozhe Zhang,Mingyu Sang, Jeong Eun Ju,Young Uk Cho, Kyowon Kang, Wonkeun Park, Suah Jung, Jung Woo Lee,Baoxing Xu,Jongbaeg Kim,Ki Jun Yu

Science advances(2024)

引用 0|浏览0
暂无评分
摘要
In the rapidly evolving field of human-machine interfaces (HMIs), high-resolution wearable electronic skin (e-skin) is essential for user interaction. However, traditional array-structured tactile interfaces require increased number of interconnects, while soft material–based computational methods have limited functionalities. Here, we introduce a thin and soft e-skin for tactile interfaces, offering high mapping capabilities through electrical impedance tomography (EIT). We employed an organic/inorganic hybrid structure with simple, cost-effective fabrication processes, ensuring flexibility and stability. The conductive and stretchable sensing domain includes a micropatterned multiwall carbon nanotube and elastomer composite. The skin-like tactile interface effectively detects pressure-induced conductivity changes, offering superior spatiotemporal resolution with fewer interconnects (pixel/interconnects >57). This EIT-based tactile interface discerns external pressures to a submillimeter degree and vertical deformations of a few hundred micrometers. It sustains stable functions under external damage or environmental changes, confirming its suitability for persistent wearable use. We demonstrate practical applications in real-time HMIs: handwriting recognition and drone control.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要