8.36% Efficient CZTS Solar Cells on Transparent Electrode Via Solution Processing

Hongkun Liu, Yize Li, Aoqi Xu,Xinyu Li,Chunxu Xiang, Sifan Zhou, Shaoying Wang, Weibo Yan,Hao Xin

Solar RRL(2024)

引用 0|浏览2
暂无评分
摘要
High‐bandgap Cu2ZnSnS4 (CZTS) thin film solar cells on transparent electrodes show favorable characteristics for new photovoltaic application scenarios including building‐integrated photovoltaics, vehicle‐integrated photovoltaics, and top cell for tandem structure. However, the efficiency of pure sulfide kesterite CZTS thin film solar cells on transparent substrates lags behind that on traditional Mo substrates. Herein, fabrication of high‐quality CZTS absorber films and efficient solar cells on fluorine‐doped tin oxide substrates from dimethyl sulfoxide solution is reported. The formation of harmful secondary phases in CZTS film is suppressed by simply adjusting the chemical stoichiometry in the precursor solution, leading to the development of 5.88% CZTS solar cells. Sodium (Na) doping further promotes grain growth and suppresses secondary phase, contributing to the reduced interface recombination and improved device performance. A champion device with an efficiency of 8.36% has been achieved with 1% Na doping, underscoring the significance of the solution process in achieving highly efficient kesterite solar cells on transparent electrodes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要