Hybrid Silicon-Gold Nanoparticles for Optical Heating and Simultaneous Temperature Monitoring in Cells

E N Gerasimova, E.F. Uvarov, V. V. Yaroshenko,Lev Logunov,Sergey Makarov, Mikhail V. Zyuzin

openalex(2024)

引用 0|浏览0
暂无评分
摘要
Optically induced hyperthermia is an actively developing approach to treating cancer. All-dielectric nanoparticles have established themselves in different biomedical applications, including optical heating and nanothermometry. However, this type of nanoparticles (NPs) do not provide sufficient heating due to the necessity for a narrow size distribution. Thus, size-separation is required. Other method of negating disadvantages of all-dielectric NPs is incorporating plasmonic nanoparticles to create hybrid nanostructure, which would be less sensitive to size distribution, making it great nanoheater and nanothermometer. In this work, we propose a simple way of fabricating hybrid silicon-gold (Si-Au) NPs. We compare hybrid nanoparticles with pristine monodisperse Si NPs. In addition, we perform optical heating and simultaneous nanothermometry inside and outside living B16-F10 melanoma cells. Results reveal, that the hybrid NPs are more efficient in biological environments, since inhomogeneous medium can make it difficult to fulfill the critical coupling conditions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要