谷歌浏览器插件
订阅小程序
在清言上使用

Impacts of Land Surface Darkening on Frozen Ground and Ecosystems over the Tibetan Plateau

Science China Earth Sciences(2024)

引用 0|浏览3
暂无评分
摘要
Tibetan Plateau (TP) is known as the “Third Pole” of the Earth. Any changes in land surface processes on the TP can have an unneglectable impact on regional and global climate. With the warming and wetting climate, the land surface of the TP saw a darkening trend featured by decreasing surface albedo over the past decades, primarily due to the melting of glaciers, snow, and greening vegetation. Recent studies have investigated the effects of the TP land surface darkening on the field of climate, but these assessments only address one aspect of the feedback loop. How do these darkening-induced climate changes affect the frozen ground and ecosystems on the TP? In this study, we investigated the impact of TP land surface darkening on regional frozen ground and ecosystems using the state-of-the-art land surface model ORCHIDEE-MICT. Our model results show that darkening-induced climate changes on the TP will lead to a reduction in the area of regional frozen ground by 1.1×104±0.019×104 km2, a deepening of the regional permafrost active layer by 0.06±0.0004 m, and a decrease in the maximum freezing depth of regional seasonal frozen ground by 0.06±0.0016 m compared to the scenario without TP land surface darkening. Furthermore, the darkening-induced climate change on the TP will result in an increase in the regional leaf area index and an enhancement in the regional gross primary productivity, ultimately leading to an increase in regional terrestrial carbon stock by 0.81±0.001 PgC. This study addresses the remaining piece of the puzzle in the feedback loop of TP land surface darkening, and improves our understanding of interactions across multiple spheres on the TP. The exacerbated regional permafrost degradation and increasing regional terrestrial carbon stock induced by TP land surface darkening should be considered in the development of national ecological security barrier.
更多
查看译文
关键词
Tibetan Plateau,Albedo,Land surface darkening,Frozen ground,Ecosystem
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要