谷歌浏览器插件
订阅小程序
在清言上使用

Magnetic Silk Fibroin Nanospheres Loaded with Amphiphilic Polypeptides and Antibiotics for Biofilm Eradication

Yufang Bi,Xuyang Chen, Feiyu Luo, Xiehe Wang,Xin Chen,Jinrong Yao,Zhengzhong Shao

BIOMATERIALS SCIENCE(2024)

引用 0|浏览2
暂无评分
摘要
The eradication of established biofilms is a highly challenging task, due to the protective barrier effect of extracellular polymeric substances (EPS) and the presence of persister cells. Both increased drug permeability and elimination of persister cells are essential for the eradication of biofilms. Here, magnetic silk fibroin nanospheres loaded with antibiotics and host defense peptide (HDP) mimics (MPSN/S@P) were developed to demonstrate a new strategy for biofilm eradication. As an HDP mimic, an amphiphilic polypeptide containing 90% l-lysine and 10% l-valine (Lys90Val10) was selected for loading onto magnetic silk fibroin nanospheres via electrostatic interactions. Lys90Val10 exhibited excellent antibacterial activities against both planktonic and persister cells of Staphylococcus aureus (S. aureus). As a representative of the hydrophobic drug, spiramycin (SPM) was conveniently embedded into the beta-sheet domain during the self-assembly process of silk fibroin. The sustained release of SPM during biofilm eradication enhanced the antibacterial efficacy of MPSN/S@P. The antibacterial test demonstrated that the extract from the MPSN/S@P suspension can kill both planktonic and persister cells of S. aureus, as well as inhibiting biofilm formation. Importantly, with the assistance of magnetic guidance and photothermal effects derived from Fe3O4 nanoparticles (Fe3O4 NPs), over 92% of bacteria in the biofilm were killed by MPSN/S@P, indicating the successful eradication of mature biofilms. The simple preparation method, integration of photothermal and magnetic responsiveness, and persister cell killing functions of MPSN/S@P provide an accessible strategy and illustrative paradigm for efficient biofilm eradication. The utilization of magnetic silk fibroin nanospheres loaded with host defense peptide (HDP) mimics and antibiotics, in conjunction with magnetic guidance and photothermal effects, resulted in the efficient eradication of biofilms.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要