谷歌浏览器插件
订阅小程序
在清言上使用

Conjugation of CRAMP18–35 Peptide to Chitosan and Hydroxypropyl Chitosan Via Copper-Catalyzed Azide–Alkyne Cycloaddition and Investigation of Antibacterial Activity

International journal of molecular sciences(2024)

引用 0|浏览2
暂无评分
摘要
We developed a synthesis strategy involving a diazo transfer reaction and subsequent click reaction to conjugate a murine cathelicidin-related antimicrobial peptide (CRAMP18–35) to chitosan and hydroxypropyl chitosan (HPC), confirmed the structure, and investigated the antimicrobial activity. Chitosan azide and HPC-azide were prepared with a low degree of azidation by reacting the parent chitosan and HPC with imidazole sulfonyl azide hydrochloride. CRAMP18–35 carrying an N-terminal pentynoyl group was successfully grafted onto chitosan and HPC via copper-catalyzed azide–alkyne cycloaddition (CuAAC) reaction. The chitosan–peptide conjugates were characterized by IR spectroscopy and proton NMR to confirm the conversion of the azide to 1,2,3-triazole and to determine the degree of substitution (DS). The DS of the chitosan and HPC CRAMP18–35 conjugates was 0.20 and 0.13, respectively. The antibacterial activity of chitosan–peptide conjugates was evaluated for activity against two species of Gram-positive bacteria, Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis), and two species of Gram-negative bacteria, Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa). The antimicrobial peptide conjugates were selectively active against the Gram-negative bacteria and lacking activity against Gram-positive bacteria.
更多
查看译文
关键词
chitosan,click chemistry,antimicrobial peptide,antibacterial activity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要