Two-dimensional Cu2N–A High-Performance Anode Material for Ion Batteries with Excellent Electrical Conductivity and Electrolyte Wettability

PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES(2025)

引用 0|浏览2
暂无评分
摘要
Determining suitable anode materials is crucial in the advancement of lithium-ion and sodium-ion battery technologies. We propose that the two-dimensional (2D) material Cu2N holds promise as a viable anode candidate. The Cu2N monolayer exhibits a stable checkerboard lattice crystal structure, ensuring structural integrity. Its excellent metallic electronic structure facilitates efficient conductivity during battery operation. We have observed that Li/Na ions can chemically bond to Cu2N substrates via specific charge exchange mechanisms. Moreover, the Cu2N monolayer demonstrates favorable wettability and compatibility with common electrolytes used in lithium-ion and sodium-ion batteries, including solvent molecules and metal salts. Our findings indicate that the Li/Na storage capacity of the Cu2N monolayer reaches approximately 760/760 mAh/g, surpassing that of graphite anodes significantly. Notably, the Li/Na diffusion barrier on the Cu2N monolayer is merely 5/13 meV, lower than that of most other 2D anode materials. Our results underscore the potential of the Cu2N monolayer as an outstanding electrode material, offering high storage capacity, rapid charge/discharge rates, and favorable wettability with electrolytes.
更多
查看译文
关键词
Density functional theory,Two-dimensional,Cu2N monolayer,Ion batteries,Anode materials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要