谷歌浏览器插件
订阅小程序
在清言上使用

Ultranarrow-linewidth Wavelength-Vortex Metasurface Holography

Weijia Meng,Johannes E. Fröch, Ke Cheng, Baoli Li, Arka Majumdar, Stefan A. Maier, Haoran Ren, Min Gu, Xinyuan Fang

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
Ultrathin metasurface holograms, with thicknesses comparable to the operating wavelength, leverage multiple degrees of freedom of light to address independent image channels, thereby significantly enhancing information capacity. Although the wavelength of light can be used to encode holographic image channels, high-capacity wavelength-multiplexing holography has traditionally been achieved only through 3D volume holograms based on Bragg diffraction. We demonstrate ultranarrow-linewidth wavelength-vortex multiplexing holography in ultrathin metasurface holograms. By applying dispersion engineering to the elementary grating functions of a multiplexing hologram, we develop a sparse k-vector-filtering aperture array in momentum space that achieves sharp wavelength selectivity in conjunction with orbital angular momentum selectivity. Further leveraging transformer neural networks for the design of phase-only multiplexing holograms, we reconstruct up to 118 independent image channels from a single metasurface hologram, achieving an ultranarrow linewidth of 2 nm in the visible range. Finally, we apply the developed wavelength-vortex multiplexing metasurface holograms for holographic visual cryptography, achieving unprecedented security with an information rate more than 2500 times higher than that of traditional visual cryptography schemes. Our results open exciting avenues for the use of metasurface holograms in various applications, including 3D displays, holographic encryption, beam shaping, LiDAR, microscopy, data storage, and optical artificial intelligence.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要