Chrome Extension
WeChat Mini Program
Use on ChatGLM

Peanut–cotton Intercropping to Enhance Soil Ecosystem Multifunctionality: Roles of Microbial Keystone Taxa, Assembly Processes, and C-cycling Profiles

AGRICULTURE ECOSYSTEMS & ENVIRONMENT(2025)

Cited 0|Views0
No score
Abstract
Legume-based intercropping, such as the peanut-cotton system, stands out as a promising strategy for enhancing soil ecosystem multifunctionality (EMF); however, the underlying microbial mechanisms driving these enhancements remain inadequately explored. In this study, after implementing peanut-cotton intercropping for six consecutive years, a data set of 13 ecosystem functional indicators including 41 soil variables, was obtained and used to quantify the average EMF index. We investigated changes in microbial keystone taxa in co-occurrence networks, community assembly processes, carbon (C) cycling profiles, and their collective impacts on soil EMF. Soil EMF increased by an average of 140.0 % in the peanut-cotton intercropping system, compared with monoculture systems of both peanut and cotton, driven by significant increases in C-cycling (159.9 %), nutrient provisioning (91.2 %), and microbial growth efficiency functions (53.9 %). The peanut-cotton intercropping system significantly increased the average well-color developments (AWCD), abundance of C-fixation and Cdegradation genes, and related pathways, resulting in a highly vigorous microbial C-cycling profile. The microbial community assembly processes shifted from a balance of stochastic and deterministic processes in monocultures to predominantly deterministic processes (>70 %) in the intercropping system. Additionally, the peanut-cotton intercropping system fostered a more efficient and stable bacterial-fungal cross-kingdom network than the monocultures, characterized by a higher average clustering coefficient, higher robustness, and shorter average path length. This intercropping system also recruited a group of keystone taxa affiliated with Proteobacteria, Actinobacteria, and Ascomycota phyla. The enhancement of EMF in the peanut-cotton intercropping system resulted from the positive impact of key microbial community members and their assembly, C/N ratios, AWCD, and C-fixation and C-degradation genes. Our study provides insights into the complex ecological linkages between microbial communities, C-cycling profiles, and soil ecosystem functions, providing valuable insights into the microbial mechanisms underlying the benefits of intercropping systems.
More
Translated text
Key words
Soil ecosystem multifunctionality,Keystone taxa,Microbial community assembly,Carbon cycling,Peanut-cotton intercropping
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined