谷歌浏览器插件
订阅小程序
在清言上使用

From Understanding Mechanical Behavior to Curvature Prediction of Humidity‐Triggered Bilayer Actuators

Advanced materials(2021)

引用 0|浏览0
暂无评分
摘要
Nature will always be an endless source of bioinspiration for man‐made smart materials and multifunctional devices. Impressively, even cutoff leaves from resurrection plants can autonomously and reproducibly change their shape upon humidity changes, which goes along with total recovery of their mechanical properties after being completely dried. In this work, simple bilayers are presented as autonomously moving, humidity‐triggered bending actuators. The bilayers—showing reproducible bending behavior with reversible kinematics and multiway behavior—are studied in terms of their mechanical behavior upon humidity changes. The active layer consists of a highly conducting polymer film based on poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) with poly(dimethylsiloxane) (PDMS) as passive layer. The response to humidity is explored with dynamic mechanical thermal analysis and quartz crystal microbalance measurements. Introduction of a composite beam model allows to predict the curvature of the actuators with input from the rheological measurements. It is clearly demonstrated that volumetric strain and Young's modulus, both heavily influenced by the water uptake, dominate the bending behavior and therefore the curvature of the actuators. This loop of rheological characterization coupled with an analytical model allows to predict curvatures of in principle any complex geometry and material combination for moving parts in soft robotics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要