谷歌浏览器插件
订阅小程序
在清言上使用

Hydrogen-induced Neuroprotection in Neonatal Hypoxic-Ischemic Encephalopathy.

Current pharmaceutical design(2021)

引用 0|浏览0
暂无评分
摘要
Hypoxic-ischemic encephalopathy (HIE) remains to be a major cause of morbidity, mortality and severe neurodevelopmental disability in term neonates. Moderate whole body hypothermia is an established, effective neuroprotective therapy to reduce mortality and long-term disability associated with HIE, however, research for adjunct therapies is still warranted to complement the effect of hypothermia. In the last decade, molecular hydrogen emerged as a simple, available, inexpensive substance with advantageous pharmacokinetics to ameliorate hypoxic-ischemic cellular damage. The present review examines the preclinical studies employing hydrogen to combat the deleterious consequences of hypoxic-ischemic insults in rodent and piglet HIE models. Hydrogen exerted unequivocal neuroprotective actions shown by preserved neurovascular function, neuronal viability, and neurocognitive functions in virtually all model species and hypoxic-ischemic insult types tested. Administration of hydrogen started in most studies after the hypoxic-ischemic insult enhancing the translational value of the findings. Among the explored mechanisms of hydrogen-induced neuroprotection, antioxidant, anti- apoptotic and anti-inflammatory effects appeared to be dominant. Unfortunately, the additive neuroprotective effect of hydrogen and therapeutic hypothermia has not yet been demonstrated, thus such studies are warranted to promote the clinical testing of molecular hydrogen as an adjunct neuroprotective treatment of HIE.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要