谷歌浏览器插件
订阅小程序
在清言上使用

Superionic Iron Hydride Shapes Ultralow-Velocity Zones at Earth's Core-Mantle Boundary.

Proceedings of the National Academy of Sciences of the United States of America(2024)

引用 0|浏览1
暂无评分
摘要
Seismological studies have exposed numerous ultralow velocity zones (ULVZs) exhibiting extraordinary physical attributes at Earth's core-mantle boundary, yet their compositions and origins remain controversial. Water-iron reaction can generate unique phases under lowermost-mantle conditions and likely plays a crucial role in forming ULVZs. Through first-principles molecular dynamic simulations with machine learning techniques, we determine that iron hydride, the product of water-iron reaction, is stable as a superionic phase at the core-mantle boundary. This superionic iron hydride has much slower velocities and a higher density than the ambient mantle under lowermost-mantle conditions. Accumulation of iron hydride, created through either a chemical reaction between subducted water and iron or solidification of core material entrained in the lower mantle by convection, can explain the seismic observations of ULVZs particularly those associated with subduction. This work suggests that water may have a substantial role in creating seismic heterogeneities at the core-mantle boundary.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要