Imagining the Severe Asthma Decision Trees of the Future
Expert review of respiratory medicine(2024)
Département de Pneumologie et Addictologie | Monash Lung and Sleep Allergy Immunology | APHM
Abstract
INTRODUCTION:There are no validated decision-making algorithms concerning severe asthma (SA) management. Future risks are crucial factors and can be derived from SA trajectories. AREAS COVERED:The future severe asthma-decision trees should revisit current knowledge and gaps. A focused literature search has been conducted. EXPERT OPINION:Asthma severity is currently defined a priori, thereby precluding a role for early interventions aiming to prevent outcomes such as exacerbations (systemic corticosteroids exposure) and lung function decline. Asthma 'at-risk' might represent the ultimate paradigm but merits longitudinal studies considering modern interventions. Real exacerbations, severe airway hyperresponsiveness, excessive T2-related biomarkers, noxious environments and patient behaviors, harms of OCS and high-doses inhaled corticosteroids (ICS), and low adherence-to-effectiveness ratios of ICS-containing inhalers are predictors of future risks. New tools such as imaging, genetic, and epigenetic signatures should be used. Logical and numerical artificial intelligence may be used to generate a consistent risk score. A pragmatic definition of response to treatments will allow development of a validated and applicable algorithm. Biologics have the best potential to minimize the risks, but cost remains an issue. We propose a simplified six-step algorithm for decision-making that is ultimately aiming to achieve asthma remission.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest