谷歌浏览器插件
订阅小程序
在清言上使用

Cancer-Targeting and Viscosity-Activatable Near-Infrared Fluorescent Probe for Precise Cancer Cell Imaging

ANALYTICAL CHEMISTRY(2024)

引用 0|浏览1
暂无评分
摘要
Small-molecule fluorescent probes have emerged as potential tools for cancer cell imaging-based diagnostic and therapeutic applications, but their limited selectivity and poor imaging contrast hinder their broad applications. To address these problems, we present the design and construction of a novel near-infrared (NIR) biotin-conjugated and viscosity-activatable fluorescent probe, named as QL-VB, for selective recognition and imaging of cancer cells. The designed probe exhibited a NIR emission at 680 nm, with a substantial Stokes shift of 100 nm and remarkably sensitive responses toward viscosity changes in solution. Importantly, QL-VB provided an evidently enhanced signal-to-noise ratio (SNR: 6.2) for the discrimination of cancer cells/normal cells, as compared with the control probe without biotin conjugation (SNR: 1.8). Moreover, we validated the capability of QL-VB for dynamic monitoring of stimulated viscosity changes within cancer cells and employed QL-VB for distinguishing breast cancer tissues from normal tissues in live mice with improved accuracy (SNR: 2.5) in comparison with the control probe (SNR: 1.8). All these findings indicated that the cancer-targeting and viscosity-activatable NIR fluorescent probe not only enables the mechanistic investigations of mitochondrial viscosity alterations within cancer cells but also holds the potential as a robust tool for cancer cell imaging-based applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要