CT-based Deep Learning Radiomics Biomarker for Programmed Cell Death Ligand 1 Expression in Non-Small Cell Lung Cancer

BMC MEDICAL IMAGING(2024)

引用 0|浏览0
暂无评分
摘要
BACKGROUND:Programmed cell death ligand 1 (PD-L1), as a reliable predictive biomarker, plays an important role in guiding immunotherapy of lung cancer. To investigate the value of CT-based deep learning radiomics signature to predict PD-L1 expression in non-small cell lung cancers(NSCLCs). METHODS:259 consecutive patients with pathological confirmed NSCLCs were retrospectively collected and divided into the training cohort and validation cohort according to the chronological order. The univariate and multivariate analyses were used to build the clinical model. Radiomics and deep learning features were extracted from preoperative non-contrast CT images. After feature selection, Radiomics score (Rad-score) and deep learning radiomics score (DLR-score) were calculated through a linear combination of the selected features and their coefficients. Predictive performance for PD-L1 expression was evaluated via the area under the curve (AUC) of receiver operating characteristic, the calibration curves, and the decision curve analysis. RESULTS:The clinical model based on Cytokeratin 19 fragment and lobulated shape obtained an AUC of 0.767(95% CI: 0.673-0.860) in the training cohort and 0.604 (95% CI:0.477-0.731) in the validation cohort. 11 radiomics features and 15 deep learning features were selected by LASSO regression. AUCs of the Rad-score were 0.849 (95%CI: 0.783-0.914) and 0.717 (95%CI: 0.607-0.826) in the training cohort and validation cohort, respectively. AUCs of DLR-score were 0.938 (95%CI: 0.899-0.977) and 0.818(95%CI:0.727-0.910) in the training cohort and validation cohort, respectively. AUCs of the DLR-score were significantly higher than those of the Rad-score and the clinical model. CONCLUSION:The CT-based deep learning radiomics signature could achieve clinically acceptable predictive performance for PD-L1 expression, which showed potential to be a surrogate imaging biomarker or a complement of immunohistochemistry assessment.
更多
查看译文
关键词
Deep learning,Non-small cell lung cancer,Programmed cell death ligand 1,Radiomics,Immune checkpoint inhibitors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要