谷歌浏览器插件
订阅小程序
在清言上使用

Privacy-preserving Protocol for High-Frequency Smart Meters Using Reversible Watermarking and Paillier Encryption

Computers and Electrical Engineering(2024)

引用 0|浏览0
暂无评分
摘要
Smart meters are the primary source of energy consumption data in the smart grid network, which can record energy usage with fine granularity. The use of smart meters expands the interaction between the energy supplier and the consumer. Security for smart meters and privacy for the users are, therefore, paramount. The study of smart-meter data, particularly security concerns, is a very active research area. A high-frequency smart meter captures and transmits energy usage data in small bursts (per second or minute). Maintaining a high level of security while processing data in such a short period of time is critical for resource-limited devices like smart meters. To address this issue, this work presents a privacy-preserving protocol for high-frequency smart meters (P3HF) using difference expansion-based reversible watermarking and Paillier homomorphic encryption. The proposed protocol significantly increases the security of high-frequency smart meters by introducing a unique encryption server and using joint watermarking and encryption to protect real-time data transmission. The acquired results, which include experiments conducted on a real hardware platform using Arduino UNO Rev.3, show that the proposed scheme ensures security and user data privacy while consuming a low amount of energy and time for execution. Additionally, a comparative analysis demonstrates that the proposed protocol performs better than earlier research works concerning requirements for data and privacy, resilience to possible attacks, and capacity to overcome their limitations.
更多
查看译文
关键词
Smart meter,Paillier encryption,Reversible watermarking,Security,Privacy,Data aggregation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要