谷歌浏览器插件
订阅小程序
在清言上使用

Communication subspace dynamics of the canonical olfactory pathway

Joaquín González, Pablo Torterolo, Kevin A. Bolding,Adriano BL Tort

biorxiv(2024)

引用 0|浏览3
暂无评分
摘要
Understanding how different brain areas communicate is crucial for elucidating the mechanisms underlying cognition. A possible way for neural populations to interact is through a communication subspace, a specific region in the state-space enabling the transmission of behaviorally-relevant spiking patterns. In the olfactory system, it remains unclear if different populations employ such a mechanism. Our study reveals that neuronal ensembles in the main olfactory pathway (olfactory bulb to olfactory cortex) interact through a communication subspace, which is driven by nasal respiration and allows feedforward and feedback transmission to occur segregated along the sniffing cycle. Moreover, our results demonstrate that subspace communication depends causally on the activity of both areas, is hindered during anesthesia, and transmits a low-dimensional representation of odor. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要