谷歌浏览器插件
订阅小程序
在清言上使用

Synergistic convergence of materials and enzymes for biosensing and self-sustaining energy devices towards on-body health monitoring

Communications Materials(2024)

引用 0|浏览0
暂无评分
摘要
Wearable enzyme-based biosensors enable advanced healthcare diagnostics through the monitoring of biomarkers and physiological states. The integration of materials engineering and enzyme conjugation has established the groundwork for advancements in modern analytical chemistry, poised to extend the frontiers of wearable biosensing further. Recent advancements in enzymatic biofuel cells have also enhanced devices by harnessing biofuels, such as glucose and lactate in biofluids. Importantly, biofuel cells offer the potential for self-powered biosensors. Here, we present an overview of the principles and considerations associated with engineering materials and integrating enzymes with electrodes to achieve effective wearable biosensing and self-sustaining biofuel cell-based energy systems. Furthermore, we discuss challenges encountered by enzymatic sensors and biofuel cells. Representative applications of wearable devices in healthcare settings are highlighted, along with a summary of real sample analyses, emphasizing the concentration ranges of analytes present in actual sweat samples to underscore their relevance in real-world scenarios. Finally, the discussion explores the anticipated impact of future material innovations and integrations on the development of next-generation wearable biodevices. Enzyme-based wearable biosensors offer a unique approach for biomarker detection. This Review discusses recent progress in enzymatic biosensors and biofuel cells, where biofuels self-power the device while enzymes concurrently work for biomarker detection.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要