Antimony-Platinum Modulated Contact Enabling Majority Carrier Polarity Selection on a Monolayer Tungsten Diselenide Channel.

Nano letters(2024)

引用 0|浏览5
暂无评分
摘要
We develop a novel metal contact approach using an antimony (Sb)-platinum (Pt) bilayer to mitigate Fermi-level pinning in 2D transition metal dichalcogenide channels. This strategy allows for control over the transport polarity in monolayer WSe2 devices. By adjustment of the Sb interfacial layer thickness from 10 to 30 nm, the effective work function of the contact/WSe2 interface can be tuned from 4.42 eV (p-type) to 4.19 eV (n-type), enabling selectable n-/p-FET operation in enhancement mode. The shift in effective work function is linked to Sb-Se bond formation and an emerging n-doping effect. This work demonstrates high-performance n- and p-FETs with a single WSe2 channel through Sb-Pt contact modulation. After oxide encapsulation, the maximum current density at |VD| = 1 V reaches 170 μA/μm for p-FET and 165 μA/μm for n-FET. This approach shows promise for cost-effective CMOS transistor applications using a single channel material and metal contact scheme.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要