谷歌浏览器插件
订阅小程序
在清言上使用

Different Effects of Bariatric Surgery on Epigenetic Plasticity in Skeletal Muscle of Individuals with and Without Type 2 Diabetes

Diabetes & Metabolism(2024)

引用 0|浏览2
暂无评分
摘要
Aim Bariatric surgery is highly effective for the treatment of obesity in individuals without (OB11OB: individuals with obesity.) and in those with type 2 diabetes (T2D22T2D: individuals with obesity and type 2 diabetes.). However, whether bariatric surgery triggers similar or distinct molecular changes in OB and T2D remains unknown. Given that individuals with type 2 diabetes often exhibit more severe metabolic deterioration, we hypothesized that bariatric surgery induces distinct molecular adaptations in skeletal muscle, the major site of glucose uptake, of OB and T2D after surgery-induced weight loss. Methods All participants (OB, n = 13; T2D, n = 13) underwent detailed anthropometry before and one year after the surgery. Skeletal muscle biopsies were isolated at both time points and subjected to transcriptome and methylome analyses using a comprehensive bioinformatic pipeline. Results Before surgery, T2D had higher fasting glucose and insulin levels but lower whole-body insulin sensitivity, only glycemia remained higher in T2D than in OB after surgery. Surgery-mediated weight loss affected different subsets of genes with 2,013 differentially expressed in OB and 959 in T2D. In OB differentially expressed genes were involved in insulin, PPAR signaling and oxidative phosphorylation pathways, whereas ribosome and splicesome in T2D. LASSO regression analysis revealed distinct candidate genes correlated with improvement of phenotypic traits in OB and T2D. Compared to OB, DNA methylation was less affected in T2D in response to bariatric surgery. This may be due to increased global hydroxymethylation accompanied by decreased expression of one of the type 2 diabetes risk gene, TET2, encoding a demethylation enzyme in T2D. Conclusion OB and T2D exhibit differential skeletal muscle transcriptome responses to bariatric surgery, presumably resulting from perturbed epigenetic flexibility.
更多
查看译文
关键词
Bariatric surgery,DNA hydroxymethylation,Marker genes,TET2,Transcriptomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要