谷歌浏览器插件
订阅小程序
在清言上使用

Optical tuning of copolymer-in-oil tissue-mimicking materials for multispectral photoacoustic imaging.

Biomedical physics & engineering express(2024)

引用 0|浏览3
暂无评分
摘要
Objective. The availability of tissue-mimicking materials (TMMs) for manufacturing high-quality phantoms is crucial for standardization, evaluating novel quantitative approaches, and clinically translating new imaging modalities, such as photoacoustic imaging (PAI). Recently, a gel comprising the copolymer styrene-ethylene/butylene-styrene (SEBS) in mineral oil has shown significant potential as TMM due to its optical and acoustic properties akin to soft tissue. We propose using artists' oil-based inks dissolved and diluted in balsam turpentine to tune the optical properties.Approach. A TMM was fabricated by mixing a SEBS copolymer and mineral oil, supplemented with additives to tune its optical absorption and scattering properties independently. A systematic investigation of the tuning accuracies and relationships between concentrations of oil-based pigments and optical absorption properties of the TMM across visible and near-infrared wavelengths using collimated transmission spectroscopy was conducted. The photoacoustic spectrum of various oil-based inks was studied to analyze the effect of increasing concentration and depth.Main results. Artists' oil-based inks dissolved in turpentine proved effective as additives to tune the optical absorption properties of mineral oil SEBS-gel with high accuracy. The TMMs demonstrated long-term stability and suitability for producing phantoms with desired optical absorption properties for PAI studies.Significance. The findings, including tuning of optical absorption and spectral shape, suggest that this TMM facilitates the development of more sophisticated phantoms of arbitrary shapes. This approach holds promise for advancing the development of PAI, including investigation of the spectral coloring effect. In addition, it can potentially aid in the development and clinical translation of ultrasound optical tomography.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要