谷歌浏览器插件
订阅小程序
在清言上使用

FreeCG: Free the Design Space of Clebsch-Gordan Transform for Machine Learning Force Fields

Shihao Shao, Haoran Geng, Zun Wang,Qinghua Cui

CoRR(2024)

引用 0|浏览3
暂无评分
摘要
Machine Learning Force Fields (MLFFs) are of great importance for chemistry, physics, materials science, and many other related fields. The Clebsch-Gordan Transform (CG transform) effectively encodes many-body interactions and is thus an important building block for many models of MLFFs. However, the permutation-equivariance requirement of MLFFs limits the design space of CG transform, that is, intensive CG transform has to be conducted for each neighboring edge and the operations should be performed in the same manner for all edges. This constraint results in reduced expressiveness of the model while simultaneously increasing computational demands. To overcome this challenge, we first implement the CG transform layer on the permutation-invariant abstract edges generated from real edge information. We show that this approach allows complete freedom in the design of the layer without compromising the crucial symmetry. Developing on this free design space, we further propose group CG transform with sparse path, abstract edges shuffling, and attention enhancer to form a powerful and efficient CG transform layer. Our method, known as FreeCG, achieves state-of-the-art (SOTA) results in force prediction for MD17, rMD17, MD22, and is well extended to property prediction in QM9 datasets with several improvements greater than 15 real-world applications showcase high practicality. FreeCG introduces a novel paradigm for carrying out efficient and expressive CG transform in future geometric neural network designs. To demonstrate this, the recent SOTA, QuinNet, is also enhanced under our paradigm. Code will be publicly available.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要