谷歌浏览器插件
订阅小程序
在清言上使用

Goos-Hänchen Shift for Relativistic Particles Based on Dirac's Equation

Jiang-Lin Zhou, Zhen-Xiao Zhang,Xing-Yan Fan,Jing-Ling Chen

arxiv(2024)

引用 0|浏览6
暂无评分
摘要
The Goos-H{\"a}nchen (GH) shift is a specifical optical phenomenon that describes a shift parallel to the reflected light inside the plane of incidence, when a finite-width light undergoes total internal reflection at the interface of medium. Although the GH shift in optics has been widely observed experimentally, its generalization remains uncovered completely in relativistic quantum mechanics for the existence of Klein's paradox. Recently, Wang has solved Klein's paradox based on the different solutions adpoted for Dirac's equation with step potential in corresponding energy regions \href{https://dx.doi.org/10.1088/2399-6528/abd340}{[J. Phys. Commun. {\bf 4}, 125010 (2020)]}. In the light of Wang's method, we calculate the GH shift for Dirac fermions under relativistic conditions when they are incident obliquely on a three-dimensional infinite potential barrier. Furthermore, we find that the relativistic quantum GH shift can be negative, which is different from the non-relativistic case.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要