谷歌浏览器插件
订阅小程序
在清言上使用

Design and Stiffness Control of a Variable-Length Continuum Robot for Endoscopic Surgery

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING(2024)

引用 0|浏览1
暂无评分
摘要
Continuum robots, owing to their inherent compliance, have become essential in endoscopic surgical procedures, such as mucosal ablation. However, the prevalent design of endoscopic manipulators, which typically features only a single active bending segment, often results in limited dexterity and accessibility. Additionally, the incorporation of variable stiffness in these robots has attracted significant interest, with the aim to improve manipulation capabilities in confined spaces. In the paper, we propose a novel variable-length continuum robot with variable stiffness for endoscopic surgery. The robot’s stiffness can be altered either by modifying the catheter’s length or solid-liquid transition of low-melting-point alloy (LMPA). The design and fabrication methods of the robot are meticulously detailed. Additionally, a quasi-static stiffness model along with a learning-based stiffness compensation approach for accurate stiffness estimation are proposed. Leveraging this model, a contact force controller is designed for ablation procedure. The experimental results show that our robot possesses good flexibility and accessibility, making it highly adept at manipulating in confined spaces. Its variable stiffness feature significantly enhances its ability to counteract external disturbance and prevent tip deformation (with a average position change of 1.1mm). Finally, through force control experiments and a surgical demonstration in a gastrointestinal model, we have further validated the robot’s applicability in surgical contexts. Note to Practitioners —This paper proposed a variable-length continuum robot with variable stiffness for endoscopic surgery. The robot can achieve axial elongation and omnidirectional bending motion, having better dexterity and accessibility than traditional medical continuum robots with one active bending segment. The robot’s stiffness can be adjusted by the length changes or solid-liquid transition of low-melting-point alloy (LMPA). Besides, an accurate stiffness model and a contact force controller are proposed for endoscopic ablation surgery. By experimental results, the robot shows high flexibility and accessibility, allowing access to confined spaces for manipulation, and good control accuracy and variable stiffness capability for endoscopic surgery.
更多
查看译文
关键词
Soft robots,small-scale robot,variable length,variable stiffness,endoscopic surgery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要